首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在DataFrame中保留数据类型不受sklearn转换的影响(计算机)

在DataFrame中保留数据类型不受sklearn转换的影响,可以通过以下几种方法实现:

  1. 数据预处理:在使用sklearn进行数据处理之前,首先将DataFrame中的数据类型进行保存和备份。可以使用DataFrame的dtypes属性获取每一列的数据类型,并将其保存在一个字典或列表中。在使用sklearn转换数据之后,再根据保存的数据类型进行恢复。
  2. 自定义转换器:sklearn提供了自定义转换器的功能,可以通过继承TransformerMixin类和实现fittransform方法来创建自定义的数据转换器。在自定义转换器中,可以根据需要对数据进行类型转换,确保数据类型不受sklearn转换的影响。
  3. 封装转换操作:可以将sklearn的转换操作封装在一个函数或类中,并通过在转换过程中手动指定数据类型,来保留DataFrame中的数据类型。例如,可以使用astype()方法将转换后的数据重新转换为原始的数据类型。

示例代码如下所示:

代码语言:txt
复制
import pandas as pd
from sklearn.preprocessing import StandardScaler

# 原始数据
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)

# 保存数据类型
dtypes = df.dtypes

# 使用sklearn转换数据
scaler = StandardScaler()
transformed_data = scaler.fit_transform(df)

# 恢复数据类型
transformed_df = pd.DataFrame(transformed_data, columns=df.columns)
transformed_df = transformed_df.astype(dtypes)

# 打印结果
print(transformed_df)

在上述示例中,我们首先使用dtypes属性保存了DataFrame中每一列的数据类型。然后,使用StandardScaler对数据进行标准化转换,得到转换后的数据transformed_data。接下来,我们将转换后的数据重新构建为DataFrame,并使用astype()方法将其转换回原始的数据类型,得到最终的结果transformed_df

需要注意的是,具体的数据转换方式和恢复方式会因不同的sklearn转换操作而有所不同,可以根据具体情况选择合适的方法进行操作。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

TensorFlow从1到2(六)结构化数据预处理和心脏病预测

前面所展示的一些示例已经很让人兴奋。但从总体看,数据类型还是比较单一的,比如图片,比如文本。 这个单一并非指数据的类型单一,而是指数据组成的每一部分,在模型中对于结果预测的影响基本是一致的。 更通俗一点说,比如在手写数字识别的案例中,图片坐标(10,10)的点、(14,14)的点、(20,20)的点,对于最终的识别结果的影响,基本是同一个维度。 再比如在影评中,第10个单词、第20个单词、第30个单词,对于最终结果的影响,也在同一个维度。 是的,这里指的是数据在维度上的不同。在某些问题中,数据集中的不同数据,对于结果的影响维度完全不同。这是数据所代表的属性意义不同所决定的。这种情况在《从锅炉工到AI专家(2)》一文中我们做了简单描述,并讲述了使用规范化数据的方式在保持数据内涵的同时降低数据取值范围差异对于最终结果的负面影响。 随着机器学习应用范围的拓展,不同行业的不同问题,让此类情况出现的越加频繁。特别是在与大数据相连接的商业智能范畴,数据的来源、类型、维度,区别都很大。 在此我们使用心脏病预测的案例,对结构化数据的预处理做一个分享。

05

建立脑影像机器学习模型的step-by-step教程

机器学习的日益普及导致了一些工具的开发,旨在使这种方法的应用易于机器学习新手。这些努力已经产生了PRoNTo和NeuroMiner这样的工具,这并不需要任何编程技能。然而,尽管这些工具可能非常有用,但它们的简单性是以透明度和灵活性为代价的。学习如何编程一个机器学习管道(即使是一个简单的)是一个很好的方式来洞察这种分析方法的优势,以及沿着机器学习管道可能发生的扭曲。此外,它还允许更大的灵活性,如使用任何机器学习算法或感兴趣的数据模式。尽管学习如何为机器学习管道编程有明显的好处,但许多研究人员发现这样做很有挑战性,而且不知道如何着手。

05

Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(一)

2006 年,Geoffrey Hinton 等人发表了一篇论文,展示了如何训练一个能够以最先进的精度(>98%)识别手写数字的深度神经网络。他们将这种技术称为“深度学习”。深度神经网络是我们大脑皮层的(非常)简化模型,由一系列人工神经元层组成。在当时,训练深度神经网络被普遍认为是不可能的,大多数研究人员在 1990 年代末放弃了这个想法。这篇论文重新激起了科学界的兴趣,不久之后,许多新论文证明了深度学习不仅是可能的,而且能够实现令人惊叹的成就,其他任何机器学习(ML)技术都无法匹敌(在巨大的计算能力和大量数据的帮助下)。这种热情很快扩展到许多其他机器学习领域。

00
领券