今天,公众号将为大家分享基于 DolphinDB 的行情中心解决方案——一个低延时、超高速的实时行情数据的指标计算以及基于历史行情数据的投研和仿真系统。...数据透视 金融数据分析通常会把原始数据转化成矩阵(面板数据)的形式,譬如每一列是一个证券,每一行是一个时间点。转换成矩阵后,计算更简单、更高效。...对于行情中心的计算需求,函数式编程和向量式编程可以提升开发的效率和运行的效率。对于一部分性能要求特别高的计算需求,如衍生品定价,脚本语言如能支持即时编译(JIT),会是一个很大的优势。...图9:股票在时间序列上的价值 计算一只 ETF 的 IOPV,则需要把篮子中所有股票当前时刻的价值进行汇总,在这种场景下,可以使用 pivot by 生成矩阵(面板数据)。...向量化编程 向量化编程是DolphinDB中最基本的编程范式。DolphinDB 中绝大部分函数支持向量作为函数的入参。
除此之外,可以充分利用 DolphinDB 矩阵计算的高效能。...在存储和计算框架上都是基于列式结构,表中的一个列可以直接作为一个向量化函数的输入参数。...如果数据在数据库中本身是按股票分区存储的,那么可以非常高效地实现数据库内并行计算。...同时流计算框架还在算法的路径上,做了极致的优化,在具有高效开发的优势的同时,又兼顾了计算的高效性能。在这一章中,将会基于实际的状态因子案例,展示实时流计算的使用方法。...6、因子回测和建模 很多时候,计算因子只是投研阶段的第一部分,而最重要的部分其实在于如何挑选最为有效的因子。在本章节中,将会讲述如何在 DolphinDB中 做因子间的相关性分析,以及回归分析。
我们做一个简单的计算,国内股票总个数按5000来算;因子个数一般机构大约为1000起,多的甚至有10000;时间频率最高的是每3秒钟生成一次数据,频率低的也有10分钟一次——也就是说,一只股票一个因子一天会生成...为了使广大用户更方便地实现因子计算和管理,助力更高效的投研和生产,DolphinDB 结合多年服务金融量化机构的经验,已经实现了部分国内常用因子库,并且支持研究和生产一体化。...下文中,将基于高频多因子存储场景,为大家介绍一个基于 DolphinDB 实现的因子库和因子存储方案,对比不同存储模式下的性能。...为了方便用户计算因子,DolphinDB 实现了所有 191 个因子的函数,并封装在模块 gtja191Alpha 中。...除此之外,DolphinDB 还为大家实现了其他市面常用的因子库,包括 WorldQuant 101 Alpha、TA-Lib、MyTT 等,用户可以直接调用模块,实现因子高效计算。
今天的推文为大家介绍如何使用DolphinDB发布的响应式状态引擎(Reactive State Engine)高效开发与计算带有状态的高频因子,实现流批统一计算。...图中的节点有3种: 1、数据源,如price。 2、有状态的算子,如a, b, d, e。 3、无状态的算子,如c和result。 从数据源节点开始,按照既定的路径,层层推进,得到最后的因子输出。...3.2 解析和优化 DolphinDB的脚本语言是支持向量化和函数化的多范式编程语言。通过函数的调用关系,不难得到计算步骤的DAG。...在后续的版本中,DolphinDB将允许用户用插件来开发自己的状态函数,注册后即可在状态引擎中使用。 3.4 自定义状态函数 响应式状态引擎中可使用自定义状态函数。...在后续的版本中,DolphinDB将以行函数(rowRank,rowSum等)表示横截面操作的语义,其它向量函数表示时间序列操作,从而系统能够自动识别一个因子中的横截面操作和时间序列操作,进一步自动构建引擎流水线
处理NaN值的函数:如nanmax()、nanmin()等,用于处理包含NaN值的数组操作。 如何在NumPy中实现矩阵分解算法?...以下是一些最佳实践,帮助你更好地集成和使用这两个库: 理解NumPy和Pandas的关系: Pandas是基于NumPy构建的,因此大部分Pandas操作都依赖于NumPy进行数值计算。...向量化操作: 利用NumPy的向量化操作来替代循环,这将显著提升性能。例如,使用NumPy的np.add 、np.multiply 等函数进行数组操作,而不是逐个元素地进行加法或乘法运算。...此外,NumPy还能够进行向量化操作,如使用square进行平方计算,以及使用dot进行矩阵乘法。这些操作可以显著提升数据预处理的效率,进而提高整个模型训练过程的效率和效果。...通过使用NumPy,可以更高效地实现这些步骤,从而加速整个训练过程。
Facebook 最近提出了新型代码搜索工具——神经代码搜索(NCS)和 UNIF,分别基于无监督和监督的方式提供快速高效的代码检索。...结果表明,这两个模型可以正确回答该数据集中的问题,如: 如何关闭/隐藏安卓软键盘? 如何在安卓中将位图转换为可画的? 如何删除一整个文件夹及其内容? 如何处理 back button?...当这些模型与其他 Facebook 构建系统(如 Aroma 和 Getafix)结合时,这个项目可以为工程师提供可扩展且不断增长的 ML 工具包,帮助他们更高效地写代码、管理代码。...研究人员使用同样的方式对查询和源代码执行分词,且使用同样的 fastText 词嵌入矩阵 T。研究人员简单地计算了词向量表示的平均值,建立一个查询语句的文档嵌入,词表外的词被舍弃。...在这个模型中,研究人员使用监督学习训练词嵌入矩阵 T,生成两个嵌入矩阵 T_c 和 T_q,分别对应代码 token 和查询 token。
它包含了向量-向量、矩阵-向量和矩阵-矩阵操作的标准集合,如向量加法、矩阵乘法等。cuBLAS 是用 CUDA C 编写的,并针对 NVIDIA GPU 进行了优化。...cuBLAS 库为各种线性代数运算提供了高度优化的实现,使得在 NVIDIA GPU 上进行数值计算变得更加高效。通过这些函数,开发者能够方便地集成高性能的数学运算到他们的应用程序中。...NVIDIA 的 CUDA 平台上高效地运行。...cuSPARSE 支持多种稀疏矩阵格式,如 CSR(Compressed Sparse Row)、CSC(Compressed Sparse Column)等,这些格式允许高效地存储和访问非零元素。...由于 cuGraph 的高效性,它非常适合应用于需要实时分析大量连接数据的场景,例如社交网络中的好友推荐、金融领域的欺诈检测、以及复杂的机器学习任务中的特征工程等。
社交网络中比较常见的应用如:通过分析基于社交网络中用户交互(如Twitter中的转发/评论/关注)构建的图,我们可以对用户进行分类,给用户推荐朋友等等。...与之对应地,有向图往往能提供更多的信息,比如上图a中的 相比于 应该嵌入到更靠近 的位置,因为 边的权重更大。...4.1 Matrix Factorization 第一种图嵌入技术是矩阵分解。 基于矩阵分解的图嵌入将图的属性(如节点两两相似性)以矩阵的形式表示出来,然后对该矩阵进行分解得到节点嵌入。...5.生成模型:可以很好地通过统一模型来利用来自不同源(例如,图结构,节点属性)的信息。直接将图嵌入到潜在语义空间中,会生成可以使用语义解释的嵌入。...1.节点推荐:根据某些标准(如相似度)将最感兴趣的K个节点推荐给给定的节点。这个在日常生活中很常见,比如淘宝的商品推荐,抖音的好友推荐等等。 2.节点检索:例如基于关键字的图像/视频搜索。
它还展示了如何在 C++ 中使用向量类型。cppOverload 这个示例展示了如何在 GPU 上使用 C++ 函数重载。...它是为了清晰地说明各种 CUDA 编程原则,而不是为了提供最通用的高性能矩阵乘法内核。...它是为了清晰地说明各种 CUDA 编程原则,而不是为了提供最通用的高性能矩阵乘法内核。CUBLAS 提供高性能的矩阵乘法。...它展示了如何在运行时链接到 CUDA 驱动程序以及如何使用 PTX 代码进行 JIT(即时)编译。它是为了清晰地说明各种 CUDA 编程原则,而不是为了提供最通用的高性能矩阵乘法内核。...convolutionFFT2D 这个示例展示了如何使用 FFT 变换高效地实现具有非常大核尺寸的 2D 卷积。
本期,我们将从Python的特征向量处理扩展到Java中实现类似功能。我们将讨论如何在Java中将特征向量转换为矩阵,介绍相关的库和实现方式。...通过具体的源码解析和应用案例,帮助开发者理解和应用Java中的矩阵操作。摘要本文将重点介绍如何在Java中将特征向量转换为矩阵。...我们将首先概述特征向量和矩阵的基本概念,然后深入解析Java中的矩阵操作,包括使用第三方库(如Apache Commons Math和EJML)。...通过对不同实现方式的分析,我们帮助开发者理解了如何在Java中进行矩阵操作。总结本文系统地介绍了在Java中实现特征向量转换为矩阵的方法。...我们通过对Apache Commons Math和EJML的深入解析,展示了如何在Java中高效地处理矩阵操作。
为了高效地处理高维数据,我们通常采用以下方法:降维技术:降维技术,如主成分分析(PCA)和 t-SNE,可以有效地将高维数据映射到低维空间,保留数据的主要特征正则化:在模型训练过程中,通过添加正则化项,...文本分类:通过词向量(如 Word2Vec 或 GloVe),可以将文本中的每个词映射到一个向量空间中,再通过平均或其他方法生成文本的向量表示,进而用于分类任务。...6.2 GloVe案例GloVe(全局向量)是斯坦福大学提出的一种词向量模型,它通过构建词汇的共现矩阵,并对矩阵进行优化来生成词向量。...优化过程通过最小化一个损失函数,使得词向量能够尽可能准确地表示共现矩阵中的统计信息效果:通过 GloVe 训练的词向量,同样能够有效地捕捉到词汇之间的语义关系,并且在某些任务中表现得比 Word2Vec...经典的 CNN 模型如 AlexNet、VGG、ResNet 等,都能够有效地将图像嵌入到低维向量空间中。
也就是说,基于用户-商品矩阵,协调过滤会给同一位用户推荐类似的商品,或者给类似的用户推荐同一商品。然而,在实际生活中,每一位用户通常只会与几件商品有交互,这使得用户——商品矩阵高度稀疏。...通常,一个协同过滤模型可以表示为,由多个用户因子向量(每个向量表示一个用户)组成的用户因子矩阵(user factor matrix)、由多个商品因子向量(每个向量表示一件商品)组成的商品因子矩阵 (item...步骤3: 每一个客户使用本地数据和全局商品因子矩阵对本地用户因子向量进行更新。...步骤5: 服务器通过联邦加权算法(如联邦平均算法)聚合从各个客户端上传的本地模型更新。并使用聚合的结果对全局商品因子矩阵进行更新。之后,服务器将全局商品因子矩阵发送给各个客户。...因此,如何在联邦学习框架下,设计高效并且精确的推荐算法也是一项很有挑战性的研究工作。
COIL有效地结合了Lexical IR和Neural IR各自的优点,通过建立高效的上下文倒排索引缓解了传统检索模型中的词汇不匹配和语义不匹配的问题,同时比起近几天发展起来的稠密向量检索模型,COIL...基于神经网络检索 为了解决词汇不匹配的问题,基于软匹配(soft matching)的神经检索模型(Neural IR)被提出来,早期的尝试包括通过无监督地计算「预训练词向量」(如word2vec、GloVe...当然可以,因此有人研究了如何通过deep LM来增强Classical IR,比如DocT5Query通过基于T5的问题生成模型来扩充文档内容,缓解词汇不匹配的问题,又比如DeepCT利用BERT来修正词权重以更好地匹配重点词...在实际的实现过程中,我们可以将 转化为一个矩阵 ,同样地,所有的 也可以整合为一个矩阵 ,这样就可以把相似度计算转化为非常高效的矩阵向量积,我们甚至还可以利用近似最近邻搜索来进一步提速,建立索引的过程如下图所示...总体来说,COIL针对如何在Lexical IR和Neural IR的交汇处设计出更优质的匹配模型这个问题迈出了很好的一步,相信未来会出现比COIL更高效的检索模型。 - END -
一、推荐系统介绍 一句话介绍推荐系统的作用:高效地达成用户与意向对象的匹配。...1.1 推荐系统的应用 推荐系统是建立在海量数据挖掘基础上,高效地为用户提供个性化的决策支持和信息服务,以提高用户体验及商业效益。...矩阵分解法 对于协同过滤算法,它本质上是一个矩阵填充问题,可以直接通过相似度计算(如基于用户的相似、基于物品的相似等)去解决。...基于特征工程的优化 通过人工结合业务设计特征、特征衍生工具(如FeatureTools)暴力生成特征 以及 特征离散化编码等特征工程的方法,为LR引入非线性的表达。...如POLY2、引入隐向量的因子分解机(FM)可以看做是LR的基础上,对所有特征进行了两两交叉,生成非线性的特征组合。
它们寻求在由新子空间和原始权重矩阵对应的子空间基所生成的空间内找到最优权重的最大投影; 基于组合的方法同时采用上述子空间调整。...改变这些值可以在不影响和定义的子空间方向特性的情况下,修改每个主成分的权重; 模式2,简单奇异向量调整:此模式涉及通过缩放它们生成的子空间来对和中的奇异向量进行简单调整。...子空间扩展 基于扩展的方法引入一个新子空间,结合该新子空间和原始权重矩阵的基来生成一个扩展空间。...在最优情况下,的列基向量应理想地补充的列基,意味着的列空间代表这些空间的直和。 尽管如此,一些研究表明,最优权重会放大原始权重矩阵中某些特定任务的方向,这些方向对于预训练并不关键(Hu等,2021)。...在参数高效微调中,有两大系列基于扩展的方法。
图卷积网络是许多复杂图神经网络模型的基础,包括基于自动编码器的模型、生成模型和时空网络等。下图直观地展示了图神经网络学习节点表示的步骤。 ?...在基于频谱的图神经网络中,图被假定为无向图,无向图的一种鲁棒数学表示是正则化图拉普拉斯矩阵,即 ? 其中,A为图的邻接矩阵,D为对角矩阵且 ? 正则化图拉普拉斯矩阵具有实对称半正定的性质。...利用这个性质,正则化拉普拉斯矩阵可以分解为 ? ,其中 ? U是由L的特征向量构成的矩阵, ? 是对角矩阵,对角线上的值为L的特征值。正则化拉普拉斯矩阵的特征向量构成了一组正交基。...(AGCN) 基于频谱的图卷积神经网络方法的一个常见缺点是,它们需要将整个图加载到内存中以执行图卷积,这在处理大型图时是不高效的。...如今融入注意力机制的模型数量正在持续增加,图神经网络也受益于此,它在聚合过程中使用注意力,整合多个模型的输出,并生成面向重要目标的随机行走。在本节中,我们将讨论注意力机制如何在图结构数据中使用。
原文:窥探向量乘矩阵的存内计算原理—基于向量乘矩阵的存内计算-CSDN博客CSDN-一见已难忘在当今计算领域中,存内计算技术凭借其出色的向量乘矩阵操作效能引起了广泛关注。...本文将深入研究基于向量乘矩阵的存内计算原理,并探讨几个引人注目的代表性工作,如DPE、ISAAC、PRIME等,它们在神经网络和图计算应用中表现出色,为我们带来了前所未有的计算体验。...窥探向量乘矩阵的存内计算原理生动地展示了基于向量乘矩阵的存内计算最基本单元。这一单元通过基尔霍夫定律,在仅一个读操作延迟内完整执行一次向量乘矩阵操作。...基于基尔霍夫定律,比特线上的输出电流便是向量乘矩阵操作的结果。将这一操作扩展,将矩阵存储在ReRAM阵列中,通过比特线输出相应的结果向量。探寻代表性工作的独特之处 1....其独特之处在于提供了一种转化算法,将实际的全精度矩阵巧妙地存储到精度有限的ReRAM存内计算阵列中。
在该模型中,研究者首先使用加性注意力机制将输入注意力查询矩阵归纳为一个全局查询向量,然后通过逐元素积建模注意力键和全局查询向量之间的交互,以学习全局上下文感知的键矩阵,并通过加性注意力将其归纳为一个全局键向量...降低计算复杂度的一个潜在方法是在对注意力矩阵(如查询)进行交互建模之前对其进行总结。 加性注意力是注意力机制的一种形式,它可以在线性复杂度的序列中有效地总结重要信息。...因此,该研究使用全局查询向量和每个键向量之间的逐元素积来建模它们的交互,并将它们组合成一个全局上下文感知的键矩阵。矩阵中的第 i 个向量表示为 p_i,公式表示为 p_i = q∗k_i。...全局键向量 k ∈ R^d 计算如下: 最后,该研究建立了注意力值矩阵与全局键向量之间的交互模型,以更好地进行上下文建模。...在长文本和短文本建模任务上,Fastformer 媲美或优于其他高效的 Transformer 变体,其原因在于 Fastformer 可以高效地建模全局上下文以及它们与不同 token 的关系,由此有助于准确地理解上下文信息
因此,我们需要实现一种对图数据的更加高效的表示方式。而图表示学习的主要目标,正是将图数据转化成低维稠密的向量化表示方式,同时确保图数据的某些性质在向量空间中也能够得到对应。...下面我们回顾一下前两类方法: 在早期,图节点的嵌入学习一般是基于分解的方法,这些方法通过对描述图数据结构信息的矩阵进行矩阵分解,将节点转化到低维向量空间中去,同时保留结构上的相似性。...同样地,隐变量 z 的先验分布选用标准正态分布: ? VAE 与 GNN 的结合,不仅可以被用来学习图数据的表示,其更独特的作用是提供了一个图生成模型的框架,能够在相关图生成的任务中得到应用。...GNN与知识图谱结合,可以将先验知识以端对端的形式高效地嵌入到学习系统中去。...作为一种端对端的图数据学习模型,GNN结合知识图谱,可以将先验知识高效地嵌入到任意一种学习系统中去,提升任务效果。
特别是在一些知识问答场景,如人工客服,知识库检索等方面,一个问题有很多种描述方法,所以在通过向量查询的方式中,根据相似度计算后会最大可能得检索到所有相关的答案,然后按照最佳匹配的权重返回最理想的结果,如大模型中的...我们把这样的函数,叫做 LSH(局部敏感哈希)。LSH 最根本的作用,就是能高效处理海量高维数据的最近邻问题。 应用场景: 海量高维向量数据的近似最近邻搜索,如大规模文本语义检索、个性化推荐等。...示例: 在一个包含数十亿张图像的图像检索系统中,可以使用HNSW将图像特征向量构建索引。查询时将上传的图像特征向量输入,通过HNSW高效地检索出最相似的图像。...上找到很多领域的文本向量模型,这些文本向量模型也是根据当前领域中的语料数据进行针对性的训练生成。...因此,我们的矩阵将是一个|V|*|V|维的矩阵。行和列都是语料集中的词汇,矩阵元素表示两个词汇出现在同一个上下文中的次数,那么矩阵元素值就是两个单词出现在同一个文档中的次数。
领取专属 10元无门槛券
手把手带您无忧上云