import Sequential, load_model
from keras.layers import LSTM, Dense, Dropout, BatchNormalization
from...n_in: Number of lag observations as input (X)....,形式为数组array形式
values = stock_data.values
# 确保所有数据为float类型
values = values.astype('float32..., 1, train_X.shape[1]))
test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))
# 转化为三维数据...,reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0