首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

大物缓考考点

光的各个电磁波公式,没考。 相干叠加,没考,但公式应该要记得。光程差中应记得,介质减去真空的折射率应该是n-1。 杨氏干涉必须知道各类条纹、条纹间距,同时还应该知道光源偏离的杨氏干涉这种情况。 杨氏干涉例题中多波长的光线切记是各个波长的中心共同组成某一级谱线。 薄膜干涉公式记牢,包括半波损失的判断,增透增反的等价命题,等倾干涉的高度差,移动等倾干涉平面的情况,左凹右凸且跨越一个等高面的时候对应二分之一波长(因为薄膜干涉的光程差公式前面有个系数二),给出多条条纹的时候切记相邻条纹间距在相除的时候要减一。牛顿环应会自己推导曲率半径公式,和给定某两级半径关系求出曲率半径的公式。等倾干涉没有涉及。迈克尔逊干涉仪记得左边可以是一臂镜面移动的距离,也可以是光程差。

03

算法导论第九章中位数和顺序统计量(选择问题)

本章如果要归结成一个问题的话,可以归结为选择问题,比如要从一堆数中选择最大的数,或最小的数,或第几小/大的数等, 这样的问题看似很简单,似乎没有什么可研究的必要,因为我们已经知道了排序算法,运用排序+索引的方式不就轻松搞定了?但细想,排序所带来的时间复杂度是不是让这个问题无形之中变得糟糕。那算法研究不就是要尽可能避免一个问题高复杂度地解决,让那些不敢肯定有无最优解的问题变得不再怀疑,这也是算法研究者所追求的一种极致哲学。既然排序让这个问题解决的性能无法确定,那我们就抛开排序,独立研究问题本身,看有没有确

07

科学瞎想系列之一一一 NVH那些事(14)

如前所述,NVH代表三个方面,即:噪声(Noise)、振动(Vibration)、舒适性或平顺性(Harshness)。振动是NVH的基础和核心,振动产生噪声,而舒适性是振动噪声综合作用的结果,从这个意义上讲,V是N、H之母,其实NVH主要就是说振动和噪声这两件事,这两件事解决了,舒适性(H)自然就解决了。前面讲的重点都是振动(V),说完振动接下来就说说噪声(N)。 说到噪声前面曾有一期瞎想之六十一《说说噪声》,其中对有关噪声的基本概念做了简要介绍,可惜当时还没有写这个NVH系列文章的计划,没有归入这个系列,大家不妨先看看那篇文章里的基础知识,把那篇文章作为NVH噪声部分的一篇吧,如果以后有机会重新编辑出版这些文章,我会把它重新编辑归类。本期我们就接着前面那篇文章往下讲,说说声波及其传播的特点。 1 声波 物体振动会引起其周围介质的振动,因此会将这种振动以波的形式传播到远方,我们称这种波为声波,最原始的那个振动物体称为声源或振动源。声波是一种纵波,也叫疏密波。声波通过空气传播到宝宝们的耳朵里,引起耳膜的振动,宝宝们就会感觉到声音,但并不是所有引起耳膜的振动宝宝们都能感觉到,只有那些频率在20~20000Hz的振动宝宝们能听到,低于这个频段的振动宝宝们是听不到的,我们叫它次声波;高于这个频段的振动宝宝们同样听不到,我们叫它超声波。 2 描述声波的物理量 声波可以用三个物理量来描述,即:声速C、波长λ和频率f。声速表示声波在介质中的传播速度,即单位时间里传播的距离m/s;波长表示一个疏密周期的间距,也就是振动一次的时间周期内传播的距离;频率表示振动的快慢,即每秒钟的振动次数。三者之间的关系是: C=λ•f ⑴ 这里要特别强调一下:声速和质点的振动速度可是两码事,千万不要混淆!声波在介质中的传播速度(声速)C是介质的固有参数,取决于介质的密度ρ和弹性模量E(应力与应变之比),与振动源无关。声速: C=(E/ρ)^½ ⑵ 由⑵式可见,介质的密度越大,声速越慢;介质的弹性模量越大,声速越快。通常由于固体的弹性模量高于液体且远高于气体,因此通常固体中的声速高于液体中的声速,液体中的声速高于气体中的声速。在20℃及标准大气压下,空气中的声速为344 m/s。水中的声速约为1450m/s,钢铁中的声速约为5000m/s。由于声音在钢铁中的传播速度远高于空气,所以宝宝们把耳朵贴在铁轨上听火车的声音往往要比在空气中听要先知道火车的远近。古代作战时也经常采用人耳贴在地上听敌军的马蹄声来预警。 声速是介质的固有特性,介质一定时,声速就是一个常数,由⑴式可知,声速一定时,频率越高,波长就越短,1000Hz的声波在空气中的波长约为344毫米,人类能听到的声波波长范围大概在17mm~17m之间。这一点希望宝宝们能记住,因为后面会讲到,声音的辐射、传播等特性都与波长(或频率)有着密切的关系。 3 声波在传播过程中的衰减 声波在一个均匀介质传播过程中是会衰减的,距离声源越远,声强越小。当声源尺寸远小于波长时,可以把声源看作点声源,此时声波在广阔的空气中以球面传播,声压会随着距声源距离的增大而成反比地减小,声强与距离平方成反比地减小。即:p∝1/r,I∝1/r²(r为观察点到声源的距离;p为声压;I为声强)。这种规律称为反平方衰减律。若已知距离声源1米处的声强级,则该声强级减去10lg(1/r²)或减去20lg(1/r)之后即可求出距离声源r处的声强级,当距离加倍时,声强级减小6dB。这个关系式并没有考虑传播过程中空气对声波的吸收,试验表明,在传播过程中,空气会对声波有吸收,而且对高频的吸收比低频大,因此,高频声波的衰减会比低频声波衰减的快,通常对于1000Hz以下的声波,用这个公式计算还是比较准确的,超过1000Hz就不准确了。在电机噪声测试时,一般取测量点距离电机1米(微电机取0.4米)处测量,这时衰减极微,可以略去。 4 声波的绕射 声波在传播时如果遇到障碍物,是可以绕过障碍物的,这种现象称为绕射。所谓“隔墙有耳”,主要就是因为绕射现象,使得虽然隔着一堵墙,但仍能听到隔壁人的说话。声波绕射有个特点,低频声波波长较长,容易绕射,频率越高波长越短的声波越不容易绕射。因此隔墙偷听男人的声音要比女人的声音可能会更容易些。工作场所经常会用隔板来隔音,由于波长越长的声波越容易绕射,因此要想起到良好的隔音效果,隔板的尺寸应该足够大,一般隔板的尺寸至少要大于波长的2倍才能起到良好的隔音效果,此外还应注意隔板距离噪声源以及听众距离隔板的距离都应不大于一倍的波长,这样才能起到良好的隔音效果。 5 声波的叠加 当两个同频率不同地点的声源发出的声波传播到某点时,如果在该点的两列声波振幅相等、相位相反,那么这两个声波在该点叠加合成的声波振幅为0,当然也就听

02

基于GAN的单目图像3D物体重建(纹理和形状)

很多机器学习的模型都是在图片上操作,但是忽略了图像其实是3D物体的投影,这个过程叫做渲染。能够使模型理解图片信息可能是生成的关键,但是由于光栅化涉及离散任务操作,渲染过程不是可微的,因此不适用与基于梯度的学习方法。这篇文章提出了DIR-B这个框架,允许图片中的所有像素点的梯度进行分析计算。方法的关键在于把前景光栅化当做局部属性的加权插值,背景光栅化作为基于距离的全局几何的聚合。通过不同的光照模型,这个方法能够对顶点位置、颜色、光照方向等达到很好的优化。此项目有两个主要特点:单图像3D物体预测和3D纹理图像生成,这些都是基于2D监督进行训练的。

01
领券