3、连续变量 在连续变量的情况下,我们需要了解变量的中心趋势和分散,使用各种统计度量可视化方法进行测量,如下所示 ?...Data_exploration_31.png 4、分类变量 对于分类变量,我们可使用频率表来了解每个类别的分布,也可以读取每个类别下的值的百分比,也可以使用每个类别的Count和Count%来衡量。...5、双变量分析 双变量分析的主要目的是发现两个变量之间的关系。可以对分类和连续变量的任何组合执行双变量分析。...4: 求a × b, a平方和b平方的和 Step 5: 如5的公式 7、Categorical&Categorical 双向表:我们可以通过创建一个计数和计数%的双向表来开始分析关系,行表示一个变量的类别...,列表示另一个变量的类别,如图。
临床研究中常需要绘制两组或多组患者(如非AKI组和AKI组)的基线特征表。 下图就是临床中常见的基线特征表。 ? 那么在R中怎么快速绘制绘制临床论文中的基线特征表1?...安装和加载R包 compareGroups包可以通过分组变量来创建单变量分析结果的基线特征表,在创建出表格后可以导出各种格式用于报告。 在使用之前先安装和加载R包。...如上图所示,在上面的结果中waist变量被指定为非正态分布的连续变量,数据被描述为中位数+四分位数。...method中的数字解释:1表示指定连续变量为正态分布;2表示指定连续变量为非正态分布;3表示将连续变量指定为分类变量;NA表示变量自动执行Shapiro-Wilks检验来确定是正态分布还是非正态分布。...调整输出结果 7.1 隐藏分类类别结果 在上面的输出的基线特征表中,默认二分类变量、多分类变量的各类别水平的结果都输出来。
连续变量情形下,在实际操作中,往往先对数据离散化分桶,然后逐个桶进行计算。 但是实际上,一种极有可能的情况是,x和y中的一个可能是离散变量,而另一个是连续变量。...因此在sklearn中,它基于[1]和[2]中提出的基于k最临近算法的熵估计非参数方法。 [1] A. Kraskov, H. Stogbauer and P....但若特征为连续变量,则我们可以使用ANOVA-F值。ANOVA F统计量的零假设是若按目标变量(类别)分组,则连续变量的总体均值是相同的。...连续变量情形下,在实际操作中,往往先对数据离散化分桶,然后逐个桶进行计算。 但是实际上,一种极有可能的情况是,x和y中的一个可能是离散变量,而另一个是连续变量。...因此在sklearn中,它基于[1]和[2]中提出的基于k最临近算法的熵估计非参数方法。 [1] A. Kraskov, H. Stogbauer and P.
在机器学习中,数据有不同的类型,包括数字、分类和文本数据。分类要素是采用一组有限值(如颜色、性别或国家/地区)的特征。...标签编码 标签编码是一种用于通过为每个类别分配一个唯一的整数值来将分类数据转换为数值数据的技术。例如,可以分别为类别为“红色”、“绿色”和“蓝色”的分类特征(如“颜色”)分配值 0、1 和 2。...但是,它可能无法准确表示类别的固有顺序或排名,并且某些机器学习算法可能会将编码值解释为连续变量,从而导致不正确的结果。...Here is an example: 在此代码中,我们首先从 CSV 文件中读取数据集。然后,我们使用 get_dummies() 函数为 “color” 列中的每个类别创建新的二进制特征。...目标编码适用于高基数分类特征,并且可以捕获类别与目标变量之间的关系。但是,如果类别很少或目标变量不平衡,则可能会过度拟合。
在此,每个新的二进制列的值1表示该子类别在原始Outlet_Type列中的存在。 用于分箱的cut() 和qcut() 分箱是一种将连续变量的值组合到n个箱中的技术。...如果尝试将连续变量划分为五个箱,则每个箱中的观测数量将大致相等。...正如预期的那样,该列的每个子类别的观察分布大致相等。 cut() : cut函数还用于离散化连续变量。...我们已经成功地使用了lambda函数apply创建了一个新的分类变量。 用于频率编码的value_counts() 和apply() 如果名义分类变量中包含许多类别,则不建议使用独热编码。...但是,如果你强调日期,则会发现你还可以计算一周中的某天,一年中的某个季度,一年中的某周,一年中的某天等等。我们可以通过这一日期时间变量创建的新变量的数量没有限制。
其中,geodetector包是地理探测器模型的原作者团队开发的,其需要保证输入的自变量数据已经全部为类别数据;其具体操作方法大家可以参考栅格数据实现地理探测器:基于R语言geodetector包。...首先,如果大家输入数据中的自变量数据具有连续变量,需要将其转换为类别变量;gdm()函数可以实现连续变量的离散化方式寻优与自动执行。...+相连接;第二个参数表示自变量中的连续变量,程序将自动对这些连续变量加以离散化方法寻优与执行;第三个参数表示存储自变量与因变量数据的数据框(Data Frames)格式的变量;最后两个变量,即为前面我们选择的离散化方法与类别数量...可以看到,my_gd变量包含了每一个连续变量在离散化后,对应的最优离散化方法与类别数量,以及地理探测器的各个分析结果。...至此,我们就完成了基于R语言中的GD包,依据多张栅格图像数据,实现类别变量的自动离散化,并进行地理探测器(Geodetector)操作的完整流程。
Seaborn作为一种流行的Python可视化库,提供了基于Matplotlib的更高级的API封装,而且针对EDA做了专门的优化,从而使得数据探索分析更加简单,功能也非常强大。...hue列需要是离散变量,含义是将x列(离散变量)的每个组别根据类别变量hue,再次进行分组,分组后用不同的颜色来表示。 palette:调色板名称,支持列表或字典,用于hue变量的不同级别的颜色。...绘图说明: 图1:单变量tip的箱型图; 图2:按类别变量time分组后的箱型图; 图3:根据smoker类别变量,对图2中每组再次分组的结果,共有4组箱型图。...hue是指,用不同的颜色来表示再次分组后的样本。 style是指,用不同的线型来表示再次分组后的样本,如“*”,“-”。 size是指,用不同的尺寸来表示再次分组后的样本大小。...总结 本文将Seaborn中常见的函数分为3大类,前两类为低阶函数,根据输入变量类型分为“离散变量VS连续变量”和“连续变量VS连续变量”,最后一类为高阶绘图函数,它集成了前面两类中的低阶函数,通过kind
朴素贝叶斯(Naive Bayesian)算法入门摘要:朴素贝叶斯算法是一种基于贝叶斯定理的分类算法,它假设各个特征之间相互独立。...应用场景朴素贝叶斯算法在以下场景中常被应用:文本分类:通过分析文本中的关键词、词频等特征,将文本分为不同的类别。垃圾邮件过滤:通过分析邮件的发件人、主题、内容等特征,将邮件判断为垃圾邮件或非垃圾邮件。...因为朴素贝叶斯算法基于特征条件独立性假设,而在数据不平衡情况下,模型容易偏向于样本较多的类别。对连续变量的处理: 朴素贝叶斯算法通常假设特征是离散的,对于连续变量,需要将其离散化处理。...类似的分类算法包括:高斯朴素贝叶斯算法(Gaussian Naive Bayes): 针对连续变量特征,使用高斯分布估计特征的概率分布,而不需要进行离散化处理。...相比于朴素贝叶斯,它可以更好地处理连续变量,但仍然假设特征之间独立。决策树算法(Decision Tree): 基于树形结构,通过一系列的判断节点对样本进行分类。
与非线性关系相比,变量之间存在线性关系更容易理解。 转换有助于将非线性关系转换为线性关系。 散点图可用于查找两个连续变量之间的关系,这些变化也改善了预测,log是常用的转换技术之一。 ?...例如,可以将收入分为三类:高,中,低,也可以对多个变量执行分箱。 生成特征 生成特征是基于现有特征生成新特征的过程。...例如,将日期(dd-mm-yy)作为数据集中的输入特征,可以生成新特征,如日,月,年,周,工作日,可能与target有更好的关系。 此步骤用于突出显示变量中的隐藏关系。 ?...Derived.png 2.1、生成特征的类别 生成派生变量 使用一组函数或不同方法从现有变量创建新变量。...将分类变量作为统计模型中的预测因子是有用的,如:性别可以产生两个变量,即为1(Male)和0(No male)的“Var_Male”和值为1(Female)和0(No Female)的“Var_Female
比如:变量可以是因个体而变化的特性,如高度、重量、性别或人格。当测量变量时,可用字母表示得到的值,通常用X和Y表示。...离散变量与连续变量 离散变量:由不同的,不可分割的类别组成,在两个相邻的类别之间不存在其他的值。 离散变量通常限于整数。 比如:一个家庭中孩子的个数,或是一个班级出席学生的个数。...连续变量:在任意两个观察到的值之间都存在着无限多个可能的值,一个连续变量可以被分割为无限个小数部分。 连续变量的其他两个因素: 1、当测量连续变量时,两个不同的个体很少会得到完全一样的测量。...2、当测量连续变量时,每个测量类别事实上都是一个区间,需要用边界来定义。 实限:可以被表示为一条连续数据线上数值组成的区间的界限。将两个相邻数值分开的实限恰好位于这两个数值的中点。...顺序量表:由一组按顺序排列的类别组成。顺序量表的测量将观察的对象按大小排序。 比如:快餐中的小、中、大饮料的大小。
我们写这篇文章的目的也不在于讨论孰优孰劣,只有基于客观条件的最合适研究人员的选择才是好的,因此,根据实际情况选择最合适的筛选变量方法才是本文的目标。 ?...01 连续变量 对于连续变量,有一个很好的处理方法可供参考。如果变量与结果之间的关系是线性的,则可以在回归公式中包含连续变量。...我们发现,在模型中,作者使用了很多“per”,如每5%变化、每0.1U每100ml/min等,这是连续变量在每次变化中以固定增量进行的变换,这种变换一直存在于“per+区间+单位”中。...它不同于无序多类别变量。有序多类别变量呈现单调递增或递减。当Logistic回归模型中存在有序的多类别变量时,不建议将这些变量直接作为连续变量引入,除非每单位变化会导致相同的风险比变化。...如种族(1=白色,2=黑色,3=黄色,4=其他),给药方式(1=口服,2=皮下注射,3=静脉注射,4=其他),都是无序的多类别变量。
之前有位读者朋友说有空介绍一下自动分箱的方法,这个确实在我们实际建模过程前是需要解决的一个问题,简单来说就是把连续变量通过分箱的方式转换为类别变量。...4)CatBoost:CatBoost的主要“卖点”就是可以直接处理类别变量,也就是不需要OneHot直接入模,它也是可以直接对连续变量直接使用的; 总的来说,像LR这类的线性模型一般都是需要对连续变量分箱的...1)基于CART算法的连续变量最优分箱 2)基于卡方检验的连续变量最优分箱 3)基于最优KS的连续变量最优分箱 基于CART算法的连续变量最优分箱 回顾一下CART,全称为分类与回归树(Classification...(一般是卡方值都高于设定的阈值,或者达到最大分组数等等) 基于最优KS的连续变量最优分箱 KS相信大家也都不陌生,可以稍微回顾下《风控建模的KS》 ,不过这里的KS值不是基于模型计算的,而是基于变量计算的...《风控建模的WOE与IV》 04 设计一个基于风控建模的自动分箱轮子 一般来说,如果要造一个基于风控建模的连续变量分箱框架,需要考虑什么内容呢?
在之前的文章R语言GD包实现栅格图像地理探测器与参数离散化方法寻优中,我们介绍了基于R语言的GD包,实现地理探测器的详细方法——当时在进行前面这一篇文章所述操作的过程中,我暂时没有遇到莫名运行报错、失败的问题...2.2 减少类别数量 其次,同时发现有的时候将连续变量离散化参数中的discitv,也就是类别的数量适当调小,也会解决一些报错。...如下图所示,可以看到我这里某一列连续变量的值,很多都是完全一样的;那么在此时,如果我们的样本数过少,就可能导致这一个连续变量最多也只有2到3个不一样的数值;此时,我们在对其加以离散化的时候,肯定也就只能分为...2类或者3类了;如果我们设置的discitv参数的最小值大于这个变量可以分出的最大类别数,那么这里自然就会报错。...,例如先用optidisc()函数执行连续变量的自动离散化,随后执行gd()函数获得q值。
One-hot 编码只是将离散变量中的每个类别分类到其自身维度的过程。...因此,如果简单地给模型连续变量在样本中的值,我们可能会丢失一些信息,比如样本属于哪个模式,以及它在该模式中的重要性。...最后,我们可以用α表示样本在其分布中的值(该样本在其高斯分布中的重要性)。 在论文的例子中,VGM 找到了 3 个高斯分布来表示连续变量 (k=3) 的分布。...然后,从该离散列中根据由该离散列中每个类别的出现频率构建的概率质量函数选择类别。最后,条件被转换为条件向量并用作生成器的输入。 3、生成器损失用于强制生成器在此条件下生成样本。...在上面的图像中,左边是数据集中泰坦尼克号上死亡和幸存乘客的真实分布。右边是生成的分布。如您所见,CTGAN学会生成与训练数据相似的分布。
探索性数据分析(EDA)是数据科学家用来分析和调查数据集并总结其主要特征的一种方法,通常采用数据可视化技术。我们可以说EDA是通过创建可视化和摘要来调查和理解数据集的过程。...1、条形图/计数图 显示分类变量的分布。可视化数据集中每个类别的频率或计数。...密度图可以可视化连续变量的分布。识别数据中的峰值、低谷和总体模式。了解分布的形状并比较多个变量的分布。...Tip') plt.show() 5、线型图 在时间序列中显示趋势或模式。表示连续区间内两个连续变量之间的关系,还可以比较连续范围内变量的变化。...,可以可视化一个数值变量在不同类别中的分布。
习惯上, 我们会学习图表的特点,进而找到不同图表适用于表达哪些数据类型。但是,在工作中, 我们经常遇到的是已知数据指标,如何在Dashboard上呈现这些数据。...数据类型:两个连续变量 使用场景:表达两个连续变量的关系 表达形态:一个变量代表横轴,另一个变量代表纵轴 局限:不适用于相关性不强的数据,也不适合比较多个类别 气泡图 气泡图(bubble chart...在漏斗图中,每个分段对应于顺序过程中的一个步骤或阶段。它们说明了数据点在各个阶段中的进展。 数据类型:具有阶段性的类别 使用场景:流程的处理,例如销售、转化和客户旅程等。...局限:不适合数据连续的场景,以及非单一顺序流程 四.多个连续变量的可视化 对于连续型的多变量,一般应用于时间序列分析。...9 线状图 线状图(line chart)把特定时间单位内的变量值以点的形式标在坐标系中,并连点成线。
2.3 特征编码的理论介绍 我把特征的类型分为五种: 自己写了一个函数 ,放在工具箱 reportgen 中用来识别变量的类型 输出如下: 特征编码的对象包含因子变量和连续变量,对于连续变量,主要有如下几种方式...它们最大的区别是,pandas默认只处理字符串类别变量,sklearn默认只处理数值型类别变量(需要先 LabelEncoder ) 2.3.6 WOE编码 在第一节中我们介绍了总体发生比率和信息比率:...) 如果一个特征有K个类别,且用和表示第k类中好人和坏人的数量,用和表示好人和坏人的数量,则 WOE 可以表示为: WOE的值越大代表对应的变量对“是好人”的贡献就越大,反之,越小就代表对应的变量对“是坏人...2.4 特征编码 LendingClub 的数据类型很多,理论上讲它的特征编码有很多种组合方式,比如 因子变量哑变量,连续变量标准化 因子变量WOE编码,连续变量标准化 连续变量离散后再WOE编码,同时因子变量...如果一个特征有K个类别,且用和表示第k类中好人和坏人的数量,用和表示好人和坏人的数量,则IV可以表示为: 一般IV值越大,该特征越要保留。
之前已经介绍的变量分析: ①相关分析:一个连续变量与一个连续变量间的关系。 ②双样本t检验:一个二分分类变量与一个连续变量间的关系。 ③方差分析:一个多分类分类变量与一个连续变量间的关系。...本次介绍: 卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。 如果其中一个变量的分布随着另一个变量的水平不同而发生变化时,那么两个分类变量就有关系。...卡方检验并不能展现出两个分类变量相关性的强弱,只能展现两个分类变量是否有关。 / 01 / 数据挖掘的技术与方法 数据挖掘的方法分为描述性与预测性两种。 两类方法均是基于历史数据进行分析。...将待分析的两分类变量中的一个变量的每一个类别设为列变量。 另一个变量的每一个类别设为行变量,中间对应着不同类别下的频数。 下面以书中的数据为例,即探索分类变量是否违约与分类变量是否破产的关系。...但是统计学上却并不是这样的。 ①自由度是指当以样本的统计量来估计总体参数时,样本中独立或能自由变化的数据的个数。
分类相信大家都不会陌生,生活中会见到很多的应用,比如垃圾邮件识别、信用卡发放等等,就是基于数据集,作出二分类或者多分类的选择。...浅层: 两者的的预测目标变量类型不同,回归问题是连续变量,分类问题离散变量。 中层: 回归问题是定量问题,分类问题是定性问题。 高层: 回归与分类的根本区别在于输出空间是否为一个度量空间。 ?...解释 分类和回归的区别在于输出变量的类型。 定量输出称为回归,或者说是连续变量预测; 定性输出称为分类,或者说是离散变量预测。...例如判断一幅图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上,分类的最后一层通常要使用softmax函数进行判断其所属类别。...在实际操作中,我们确实常常将回归问题和分类问题互相转化,即分类模型可将回归模型的输出离散化,回归模型也可将分类模型的输出连续化。
我们还将讨论如何在训练神经网络时设置最重要的超参数:学习率(这主要基于 Leslie Smith 的 learning rate finder)。...图像分割模型的结果 接下来的图像分割,是一个标记图像中每个像素的过程,其中一个类别显示该像素描绘的对象类型。将使用与早期图像分类类似的技术,所以不需要太多调整。...本课程中还会使用到 CamVid 数据集,该模型误差远低于在学术文献中找到的任何模型。 假设:如果你的因变量是连续值而不是类别怎么办?...对于表格数据,我们还将看到如何使用分类变量和连续变量,以及如何使用 fast.ai. tabular 模块来设置和训练模型。...在这个过程中,可以看到嵌入层的权重,以找出模型从分类变量的中学到了什么。 ? 尽管嵌入在 NLP 的单词嵌入环境中最广为人知,但它们对一般的分类变量也同样重要,例如表格数据或协同过滤。
领取专属 10元无门槛券
手把手带您无忧上云