一种非监督的机器学习算法, 如高斯混合模型(GMM) , 可以用来模拟电机的正常行为, 并检测电机何时开始偏离其基线。 非监督的方法有利于发现数据中隐藏的模式, 而无需对数据进行标记。...第一层被称为输入层, 它是输入信号或数据的接口。最后一层是输出层, 这一层中神经元输出最终的预测或结果。
在输入和输出层之间, 有一个或多个隐藏层(图5)。 一层的输出通过加权后连接到下一层的节点。...网络通过修改这些权重来学习输入和输出之间的映射。通过使用多个隐藏层, 深度学习算法从输入数据中提取特征, 而不需要明确地将特征输入到算法中。 这被称为"特征学习"。
?...其中一些网络显示了对控制和监控物联网应用的承诺:
深层神经网络(Deep Neural Network, DNN)是一种完全连接的人工神经网络, 具有许多隐藏层(因此深层)。...图6 机器人控制应用的深度强化学习
训练
DNN需要大量的训练数据, 这些数据最好包括来自学习所需要的所有不同状态或条件的数据。