为了实现这一点,SVM通过求解以下优化问题找到超平面的W和b:
它试图找到W,b,使最近点的距离最大化,并正确分类所有内容(如y取±1的约束)。...目标函数在α中明显是二次的,约束是线性的,这意味着它可以很容易地用二次规划求解。一旦找到解,由对偶的推导可知:
注意,只有具有α>0的点才定义超平面(对和有贡献)。这些被称为支持向量。...点积、外积和二次型分别基于索引的等价表达式:
可以将对偶优化问题写成矩阵形式如下:
这是一个二次规划,CVXOPT的文档中解释如下:
可以只使用(P,q)或(P,q,G,h)或(P,q,G,h, A,...对于(P, q, G, h, A, b)的值,我们的例子可以做以下比较:
为了便于比较,将第一个重写如下:
现在很明显(0≤α等价于-α≤0):
我们就可以写出如下的fit函数:
@SVMClass...\alpha_N)^t
来获得在与支持向量对应的任何索引处为1的标志数组,然后可以通过仅对支持向量和
(x_s, y_s)
的边界支持向量的索引求和来应用预测方程。