在Flink流处理中,对带过滤器的键控流添加处理函数可以通过以下步骤实现:
ProcessFunction
、KeyedProcessFunction
、CoProcessFunction
等。以下是一个示例代码,展示了如何在Flink中对带过滤器的键控流添加处理函数:
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.util.Collector;
public class FilteredKeyedStreamExample {
public static void main(String[] args) throws Exception {
// 创建流处理环境
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 创建数据流
DataStream<String> input = env.fromElements(
"apple,10",
"banana,20",
"apple,30",
"orange,40"
);
// 将数据流转换为键值对,并过滤掉数量小于20的记录
DataStream<Tuple2<String, Integer>> filteredStream = input
.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String value) throws Exception {
String[] parts = value.split(",");
return new Tuple2<>(parts[0], Integer.parseInt(parts[1]));
}
})
.filter(new FilterFunction<Tuple2<String, Integer>>() {
@Override
public boolean filter(Tuple2<String, Integer> value) throws Exception {
return value.f1 >= 20;
}
});
// 对过滤后的键控流添加处理函数
filteredStream.keyBy(value -> value.f0)
.process(new KeyedProcessFunction<String, Tuple2<String, Integer>, String>() {
@Override
public void processElement(Tuple2<String, Integer> value, Context ctx, Collector<String> out) throws Exception {
out.collect("Key: " + value.f0 + ", Value: " + value.f1);
}
})
.print();
// 执行流处理任务
env.execute("Filtered Keyed Stream Example");
}
}
通过以上步骤和示例代码,可以在Flink中对带过滤器的键控流添加处理函数,并解决常见的相关问题。
没有搜到相关的文章