使用Keras和tensorflow2.2可以无缝地为深度神经网络训练添加复杂的指标 Keras对基于DNN的机器学习进行了大量简化,并不断改进。...这里,我们将展示如何基于混淆矩阵(召回、精度和f1)实现度量,并展示如何在tensorflow 2.2中非常简单地使用它们。...虽然这是肯定的,但是当所有的类训练的不完全拟合时,即使数据集是平衡的,准确性也是一个糟糕的度量标准。 在本文中,我将使用Fashion MNIST来进行说明。...自tensorflow 2.2以来,添加了新的模型方法train_step和test_step,将这些定制度量集成到训练和验证中变得非常容易。...keras.Sequential)、编译并训练一个顺序模型(处理函数和子类化API的过程非常简单,只需实现上面的函数)。
使用tf.keras,您可以设计,拟合,评估和使用深度学习模型,从而仅用几行代码即可做出预测。它使普通的深度学习任务(如分类和回归预测建模)可供希望完成任务的普通开发人员使用。...在本教程中,您将找到使用tf.keras API在TensorFlow中开发深度学习模型的分步指南。...如何通过减少过度拟合和加速训练来提高tf.keras模型的性能。 这些例子很小。您可以在大约60分钟内完成本教程。...开发递归神经网络模型 如何使用高级模型功能 如何可视化深度学习模型 如何绘制模型学习曲线 如何保存和加载模型 如何获得更好的模型性能 如何减少辍学过度拟合 如何通过批量归一化来加速培训 如何在适当的时间停止训练并尽早停止...目前,我们建议使用TensorFlow后端的多后端Keras的Keras用户在TensorFlow 2.0中切换到tf.keras。
我将借鉴自己的经验,列出微调背后的基本原理,所涉及的技术,及最后也是最重要的,在本文第二部分中将分步详尽阐述如何在 Keras 中对卷积神经网络模型进行微调。 首先,为什么对模型进行微调?...然后,我们在网络上运行反向传播来微调预训练的权重。确保执行交叉验证,以便网络具有很好的泛化能力。 2. 使用较小的学习率去训练网络。...Caffe Model Zoo -为第三方贡献者分享预训练 caffe 模型的平台 Keras Keras Application - 实现最先进的 Convnet 模型,如 VGG16 / 19,googleNetNet...,Inception V3 和 ResNet TensorFlow VGG16 Inception V3 ResNet Torch LoadCaffe - 维护一个流行模型的列表,如 AlexNet 和...在 Keras 中微调 在这篇文章的第二部分,我将详细介绍如何在 Keras 中对流行模型 VGG,Inception V3 和 ResNet 进行微调。
在 TensorFlow 中结合 Keras 使用,会有双赢效果: 你可以使用 Keras 提供的简单、原生 API 来创建自己的模型。...此外,我们还使用 Dropout 技术来防止模型的过拟合现象。...虽然这不是最先进的模型,但它能比随机猜测 (1/10) 要好得多。 相比起小型的神经网络,我们模型的结果实际上是非常好的! 此外,正如我们在输出图6中所示,我们模型并不会发生过拟合现象。...你可以在 TensorFlow 中的 tf.keras 模块,使用一行代码来将 CRELU 函数添加到我们的 Keras 模型中。...相反,更需要我们注意的是,如何在 Keras 模型内部,用 TensorFlow 的激活函数替换标准 Keras 激活函数!
LSTM可用于模型中,以接受输入数据序列并进行预测,例如分配类别标签或预测数值,例如序列中的下一个值或多个值。 我们将使用汽车销售数据集来证明LSTM RNN用于单变量时间序列预测。...为了实现这一点,我们将定义一个名为split_sequence()的新函数,该函数会将输入序列拆分为适合拟合监督学习模型(如LSTM)的数据窗口。...因此,对模型中的连接和数据流有一个清晰的了解非常重要。如果您使用功能性API来确保确实按照预期的方式连接了模型的各层,那么这一点尤其重要。 您可以使用两种工具来可视化模型:文本描述和绘图。...深度学习模型的交叉熵损失学习曲线 如何保存和加载模型 训练和评估模型很棒,但是我们可能希望稍后使用模型而不必每次都对其进行重新训练。 这可以通过将模型保存到文件中,然后加载它并使用它进行预测来实现。...这可以使用pip来实现;例如: pip install h5py 下面的示例将一个简单模型拟合为合成二进制分类问题,然后保存模型文件。
LSTM可用于模型中,以接受输入数据序列并进行预测,例如分配类别标签或预测数值,例如序列中的下一个值或多个值。 我们将使用汽车销售数据集来证明LSTM RNN用于单变量时间序列预测。...为了实现这一点,我们将定义一个名为split_sequence()的新函数,该函数会将输入序列拆分为适合拟合监督学习模型(如LSTM)的数据窗口。...因此,对模型中的连接和数据流有一个清晰的了解非常重要。如果您使用功能性API来确保确实按照预期的方式连接了模型的各层,那么这一点尤其重要。 您可以使用两种工具来可视化模型:文本描述和绘图。...这可以通过将模型保存到文件中,然后加载它并使用它进行预测来实现。 这可以通过使用模型上的save()函数来保存模型来实现。稍后可以使用load_model()函数加载它。...这可以使用pip来实现;例如: pip install h5py 下面的示例将一个简单模型拟合为合成二进制分类问题,然后保存模型文件。
因为移动设备的硬件资源有限,直接使用大模型往往会卡顿,无法顺畅运行。所以,如何在移动端高效地部署和优化模型,成了开发的关键。...我个人特别喜欢使用 TensorFlow 框架做开发,简称“TF”,研究如何使用机器学习模型部署工作,TensorFlow 的功能强大,简化开发流程,真的非常成功。...挑战点: • 在模型压缩的过程中,如何在保持模型精度的同时降低模型大小。 • 实现轻量级模型时,如何减少运算资源的消耗而不影响用户体验。...通过 TensorFlow Lite 的优化和多线程处理,可以有效降低推理时的延迟。 挑战点: • 如何通过多线程或者硬件加速器来减少延迟,同时保证推理结果的准确性。...• 同时,使用 ONNX 格式可以帮助模型在不同框架和平台间迁移,但在转换过程中,可能遇到精度下降或者其他兼容性问题。
转载自:51CTO技术栈原文地址:使用TensorFlow训练图像分类模型的指南众所周知,人类在很小的时候就学会了识别和标记自己所看到的事物。...01 数据集和目标在本示例中,我们将使用MNIST数据集的从0到9的数字图像。其形态如下图所示:我们训练该模型的目的是为了将图像分类到其各自的标签下,即:它们在上图中各自对应的数字处。...import tensorflow as tffrom tensorflow.keras.utils import to_categoricalfrom tensorflow.keras.models...毕竟,过度拟合模型倾向于准确地记住训练集,并且无法泛化那些不可见(unseen)的数据集。输出层是我们网络中的最后一层,它是使用Dense() 方法来定义的。...然后,我们通过使用x_train、y_train、batch_size、epochs和validation_data去调用一个拟合方法,并拟合出模型。
这里,我们将使用一个简单的人工数据集,并演示如何通过调整训练过程和预处理数据来避免欠拟合。我们将创建一个人工数据集,其中包含一些噪音,并且使用神经网络模型来演示如何防止欠拟合。...我们将使用Keras库来构建我们的模型,并展示如何通过延长训练时间和对数据进行预处理(如添加噪声过滤)来改进模型性能。...tensorflow.keras.layers import Dense, Dropoutfrom tensorflow.keras.optimizers import Adamfrom tensorflow.keras.callbacks...过拟合指的是模型在训练数据上表现得过于出色,但在未见过的数据(如验证集或测试集)上的性能显著下降;而欠拟合则是指模型未能充分学习到数据中的模式,导致其在训练集和测试集上的表现都不佳。...这意味着要采取一系列策略来优化模型的表现:针对过拟合:可以采用正则化技术(如L1/L2正则化)、Dropout、早停法(Early Stopping)、数据增强等方法来控制模型复杂度,并确保模型不会过度适应训练数据
Batch Normalization 批处理规范化背后的主要思想是,在我们的案例中,我们通过使用几种技术(sklearn.preprocessing.StandardScaler)来规范化输入层,从而提高了模型性能...要将其添加到TensorFlow模型中,只需在层后添加 tf.keras.layers.BatchNormalization()。 让我们看一下代码。...Dropout 避免正则化的另一种常见方法是使用Dropout技术。使用dropout背后的主要思想是,我们基于某种概率随机关闭层中的某些神经元。 让我们在Tensorflow中对其进行编码。...最后: 本文简要介绍了如何在Tensorflow中使用不同的技术。如果您缺乏理论,我建议您在Coursera的“深度学习专业化”课程2和3中学习有关正则化的更多信息。...您还必须学习何时使用哪种技术,以及何时以及如何结合使用不同的技术,才能获得真正卓有成效的结果。 希望您现在对如何在Tensorflow 2中实现不同的正则化技术有所了解。
教程 | 如何解决LSTM循环神经网络中的超长序列问题 教程 | 一个基于TensorFlow的简单故事生成案例:带你了解LSTM 教程 | 如何判断LSTM模型中的过拟合与欠拟合 教程 | 如何估算深度神经网络的最优学习率...回归问题 每个Kaggle冠军的获胜法门:揭秘Python中的模型集成 教程 | 如何在Python中快速进行语料库搜索:近似最近邻算法 2....教程 | 在Python和TensorFlow上构建Word2Vec词嵌入模型 教程 | 详解如何使用Keras实现Wassertein GAN 机器之心GitHub项目:从零开始用TensorFlow...如何构建skip-gram模型来训练和可视化词向量 教程 | 利用TensorFlow和神经网络来处理文本分类问题 5....教程 | TensorFlow 官方解读:如何在多系统和网络拓扑中构建高性能模型 教程 | 如何使用TensorFlow中的高级API:Estimator、Experiment和Dataset 教程
Python 的 Softmax 激活函数 TensorFlow 2 教程:使用tf.keras开始深度学习 使用 Python 和 Keras 逐步开发第一个神经网络 使用 Python 和 Keras...Python 和 Keras 中对深度学习模型使用学习率调度 如何在 Keras 中可视化深度学习神经网络模型 深度学习神经网络的权重初始化 什么是深度学习?...可变长度输入序列的数据准备 如何用 Python 和 Keras 开发用于序列分类的双向 LSTM 如何在 Keras 中开发用于序列到序列预测的编解码器模型 如何诊断 LSTM 模型的过拟合和欠拟合...) 自然语言处理的数据集 如何开发一种深度学习的词袋模型来预测电影评论情感 深度学习字幕生成模型的温和介绍 如何在 Keras 中定义神经机器翻译的编解码器序列到序列模型 如何利用小实验在 Keras...如何在 Python 中从零开始编写 T 检验 如何在 Python 中生成随机数 如何转换数据来更好地拟合正态分布 如何使用相关来理解变量之间的关系 如何使用统计量识别数据中的异常值 用于比较机器学习算法的假设检验
2.1.1 随机裁剪与旋转 在图像分类任务中,通过随机裁剪、旋转和颜色扰动来增强图像,使数据更具多样性,提高模型的学习能力。下面是一个在 TensorFlow 中实现的代码示例。...以下代码使用 IsolationForest 来检测并删除数据中的异常值。...模型架构优化 3.1 使用不同类型的层来提升模型能力 模型架构优化是提高模型性能的有效手段。例如,应用深度可分离卷积来减少计算量,使用注意力机制来聚焦最相关的信息。...3.1.1 深度可分离卷积 深度可分离卷积是一种通过分离卷积和逐点卷积来减少计算量的方法,常用于轻量级网络,如 MobileNet。...过拟合是深度学习模型在训练过程中面临的一个常见问题,尤其是在训练数据量不足的情况下。
损失计算是基于预测值和实际值之间的差异来做的。如果预测值与实际值相差甚远,损失函数将得到一个非常大的数值。 Keras 是一个创建神经网络的库,它是开源的,用 Python 语言编写。...Keras 不支持低级计算,但它运行在诸如 Theano 和 TensorFlow 之类的库上。 在本教程中,我们将使用 TensorFlow 作为 Keras backend。...backend 是一个 Keras 库,用于执行计算,如张量积、卷积和其他类似的活动。...Keras 模型优化器和编译模型 现在是时候训练这个模型,看看它是否正常工作了。为此,我们在模型上使用拟合方法,传递自变量 x 和因变量 y 以及 epochs=100。...你可以查看下图中的模型训练的结果: epoch=100 的 Keras 模型训练 结语 ---- 在本文中,我们了解了什么是自定义损失函数,以及如何在 Keras 模型中定义一个损失函数。
并行和分布式计算:多线程、多进程、分布式系统。 案例解析: 多线程编程:使用 Python 的 threading 模块创建多线程程序,例如编写一个多线程爬虫,理解线程之间的同步与锁机制。...过拟合与欠拟合:正则化、模型选择。 案例解析: 线性回归:使用 scikit-learn 实现线性回归模型,对房价预测进行建模。学习如何处理过拟合问题,例如通过正则化(L1、L2)。...案例解析: MNIST 手写数字识别:使用 TensorFlow 或 PyTorch 实现一个简单的多层感知机(MLP)来识别手写数字。...Keras:快速原型开发。 案例解析: 手写神经网络:在 TensorFlow 中实现前向传播和反向传播,手动计算梯度,训练一个简单的神经网络。通过这种实践,深入理解神经网络的工作原理。...案例解析: Q-learning 迷宫问题:使用 Q-learning 算法解决迷宫问题,找到从起点到终点的最优路径。理解 Q-learning 如何通过学习环境中的反馈来优化策略。
在机器学习中,迁移学习的过程也类似:它利用在一个任务上训练得到的模型,来加速另一个相关任务的学习。 为什么使用迁移学习? 数据有限: 有时候,收集和标注大量数据是非常困难的。...迁移学习的流程 选择预训练模型: 首先,选择一个在大型数据集(如 ImageNet)上训练好的模型。这个模型已经学会了很多通用的特征,如图像中的边缘、颜色等。...微调模型: 然后,将这个预训练模型应用到你的任务中。你可以对模型进行“微调”——即保留大部分已经学到的知识,只调整最后几层,或者仅训练最后一层来适应你的任务。...迁移学习的实际应用 图像分类:许多人使用在大规模数据集(如 ImageNet)上训练的预训练模型,解决特定的图像分类任务(如植物识别、动物分类等)。这些模型已学到的图像特征在新任务中同样有效。...具体来说,代码对训练数据应用了多种数据增强技术,以增加数据集的多样性,并创建数据生成器,便于模型在训练过程中批量加载图像。目的是防止模型过拟合,提高模型的泛化能力。
但很多时候,在用于学习的训练数据上表现良好的模型,在新的数据上却效果不佳,这是模型陷入了『过拟合』的问题中了,在本篇内容中,ShowMeAI将给大家梳理帮助深度神经网络缓解过拟合提高泛化能力的方法。...pillow 和 OpenCV 这样的图像处理库来手动执行图像增强,但更简单且耗时更少的方法是使用 Keras API 来完成。...它通过动态调整网络来减少过拟合的概率。...Early stopping早停止是一种判断迭代轮次的技术,它会观察验证集上的模型效果,一旦模型性能在验证集上停止改进,就会停止训练过程,它也经常被使用来缓解模型过拟合。...『数据增强』技术将通过构建和扩增样本集来缓解模型过拟合,dropout 层通过随机丢弃一些神经元来降低网络复杂性,正则化技术将惩罚网络训练得到的大幅度的权重,early stopping 会防止网络过度训练和学习
在这篇文章中,您将发现在 Keras 中创建,训练和评估深度学习神经网络的逐步生命周期,以及如何使用训练有素的模型进行预测。...阅读这篇文章后你会知道: 如何在 Keras 中定义,编译,拟合和评估深度学习神经网络。 如何为回归和分类预测建模问题选择标准默认值。...该模型评估所有测试模式的损失,以及编译模型时指定的任何其他指标,如分类准确性。返回评估指标列表。...摘要 在这篇文章中,您使用 Keras 库发现了深度学习神经网络的 5 步生命周期。 具体来说,你学到了: 如何在 Keras 中为神经网络定义,编译,拟合,评估和预测。...如何在 Keras 开发和运行您的第一个多层感知器模型。 您对 Keras 中的神经网络模型有任何疑问吗?在评论中提出您的问题,我会尽力回答。
Logistic 模型的损失函数 使用逻辑回归 经验概率分布的近似 拟合 Logistic 模型 评估 Logistic 模型 多类分类 十八、统计推断 - - 假设检验和置信区间...100% Keras 深度学习库的二元分类教程 @ElmaDavies 100% 如何用 Keras 构建多层感知器神经网络模型 @Lnssssss 100% 如何在 Keras 中检查深度学习模型...Keras 中对深度学习模型使用学习率调度 如何在 Keras 中可视化深度学习神经网络模型 什么是深度学习?...XGBoost - - 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合 @tabeworks 100% 如何在 Python 中调优 XGBoost 的多线程支持 @tabeworks...XGBoost 模型 在 Python 中使用 XGBoost 调整梯度提升的学习率 如何在 Python 中使用 XGBoost 调整决策树的数量和大小 如何在 Python 中使用 XGBoost
领取专属 10元无门槛券
手把手带您无忧上云