首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在CM中启用YARN的使用率报告

默认群集利用率报告YARN是没有开启的,参考下图: [lgc2vf41bu.jpeg] 本文主要介绍如何开启YARN的容器资源使用收集功能。...YARN的容器使用情况度量收集 ---- 1.首先在YARN服务中开启容器使用情况度量收集 [gxt0igoa4o.jpeg] [lf2kuu5h3w.jpeg] 对于“容器使用情况MapReduce作业用户...实际并不会马上看到这个用于计算YARN容器资源使用的MapReduce作业,最多等待1小时。 3.再次回到集群利用率报告里的YARN,已经有数据显示。...[n8og354dbo.jpeg] 4.总结 ---- 1.CM默认不开启YARN的资源使用率报告。 2.如果要开启,首先需要在各台机器创建一个UID大于1000的普通用户。...注:Fayson在测试过程中,CM并没有专门指定队列,所以在运行任务的时候默认使用的是第二条放置策略,即:使用池 root.users.username ,如果该池不存在则加以创建。

4.4K50

使用OpenCV与sklearn实现基于词袋模型(Bag of Word)的图像分类预测与搜索

基于OpenCV实现SIFT特征提取与BOW(Bag of Word)生成向量数据,然后使用sklearn的线性SVM分类器训练模型,实现图像分类预测。...实现基于词袋模型的图像分类预测与搜索,大致要分为如下四步: 1.特征提取与描述子生成 这里选择SIFT特征,SIFT特征具有放缩、旋转、光照不变性,同时兼有对几何畸变,图像几何变形的一定程度的鲁棒性,使用...3.SVM分类训练与模型生成 使用SVM进行数据的分类训练,得到输出模型,这里通过sklearn的线性SVM训练实现了分类模型训练与导出。...4.模型使用预测 加载预训练好的模型,使用模型在测试集上进行数据预测,测试表明,对于一些简单的图像分类与相似图像预测都可以获得比较好的效果。 完整步骤图示如下: ?...OpenCV中KMeans算法介绍与应用 代码实现,特征提取与训练模型导出 import cv2 import imutils import numpy as np import os from sklearn.svm

4.3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ML Mastery 博客文章翻译(二)20220116 更新

    中将 YOLOv3 用于对象检测 如何使用 Keras 训练对象检测模型 如何使用测试时间扩充做出更好的预测 在 Keras 中将计算机视觉模型用于迁移学习 如何在卷积神经网络中可视化过滤器和特征图...如何选择性缩放机器学习的数值输入变量 Python 中用于降维的奇异值分解 如何在 Python 中使用标准缩放器和最小最大缩放器变换 机器学习中缺失值的统计插补 使用 Sklearn 的表格数据测试时间增强...——风格生成对抗网络 如何在 Keras 开发最小二乘生成对抗网络 如何识别和诊断 GAN 故障模式 开始使用 GANs 的最佳资源 如何在 Keras 中从头实现半监督 GAN(SGAN) 生成对抗网络模型之旅...如何手动优化神经网络模型 使用 Sklearn 建模管道优化 机器学习没有免费午餐定理 机器学习优化速成班 如何使用优化算法手动拟合回归模型 过早收敛的温和介绍 函数优化的随机搜索和网格搜索 Python...Caret 包估计 R 中的模型准确率 如何在 R 中入门机器学习算法 如何在 R 中加载机器学习数据 如何将 R 用于机器学习 R 中的线性分类 R 中的线性回归 R 中的机器学习数据集(你现在可以使用的

    4.4K30

    ML Mastery 博客文章翻译 20220116 更新

    开发深度学习模型 Python 中的 Keras 深度学习库的回归教程 如何使用 Keras 获得可重现的结果 如何在 Linux 服务器上运行深度学习实验 保存并加载您的 Keras 深度学习模型...Python 和 Keras 中对深度学习模型使用学习率调度 如何在 Keras 中可视化深度学习神经网络模型 深度学习神经网络的权重初始化 什么是深度学习?...可变长度输入序列的数据准备 如何用 Python 和 Keras 开发用于序列分类的双向 LSTM 如何在 Keras 中开发用于序列到序列预测的编解码器模型 如何诊断 LSTM 模型的过拟合和欠拟合...和 Sklearn 的多核机器学习 Python 多项式逻辑回归 Python 中的最近收缩质心 Python 机器学习的嵌套交叉验证 如何在 Sklearn 中识别过拟合机器学习模型 Python...机器学习中的预测区间 应用统计学与机器学习的密切关系 如何使用置信区间报告分类器表现 统计量分布的简要介绍 15 个 Python 中的统计假设检验(备忘单) 统计假设检验的温和介绍 10 个在机器学习项目中使用统计方法的示例

    3.4K30

    TensorFlow2 keras深度学习:MLP,CNN,RNN

    此模型适用于表格数据,即表格或电子表格中的数据,每个变量一列,每个变量一行。您可能需要使用MLP探索三个预测建模问题;它们是二进制分类,多分类和回归。 让我们针对每种情况在真实数据集上拟合模型。...二进制分类的MLP 我们将使用二进制(两类)分类数据集来演示用于二进制分类的MLP。 该数据集涉及预测结构是否在大气中或不给定雷达回波。 数据集将使用Pandas自动下载。...鸢尾花数据集(csv) 鸢尾花数据集描述(csv) 鉴于它是一个多类分类,因此该模型在输出层中的每个类必须具有一个节点,并使用softmax激活函数。...您也可以在MLP,CNN和RNN模型中添加Dropout层,尽管您也可能想探索与CNN和RNN模型一起使用的Dropout的特殊版本。 下面的示例将一个小型神经网络模型拟合为一个合成二进制分类问题。...的小数据集深度学习图像分类 7.用于NLP的seq2seq模型实例用Keras实现神经机器翻译 8.python中基于网格搜索算法优化的深度学习模型分析糖 9.matlab使用贝叶斯优化的深度学习

    2.2K30

    TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)

    此模型适用于表格数据,即表格或电子表格中的数据,每个变量一列,每个变量一行。您可能需要使用MLP探索三个预测建模问题;它们是二进制分类,多分类和回归。 让我们针对每种情况在真实数据集上拟合模型。...二进制分类的MLP 我们将使用二进制(两类)分类数据集来演示用于二进制分类的MLP。 该数据集涉及预测结构是否在大气中或不给定雷达回波。 数据集将使用Pandas自动下载。...鸢尾花数据集(csv) 鸢尾花数据集描述(csv) 鉴于它是一个多类分类,因此该模型在输出层中的每个类必须具有一个节点,并使用softmax激活函数。...首先,报告每个图像的形状以及类别数;我们可以看到每个图像都是28×28像素,并且我们有10个类别。 在这种情况下,我们可以看到该模型在测试数据集上实现了约98%的分类精度。...您也可以在MLP,CNN和RNN模型中添加Dropout层,尽管您也可能想探索与CNN和RNN模型一起使用的Dropout的特殊版本。 下面的示例将一个小型神经网络模型拟合为一个合成二进制分类问题。

    2.3K10

    机器学习入门与实践:从原理到代码

    通过本文,读者将了解机器学习的核心概念,如监督学习、无监督学习和强化学习,以及如何在Python中使用Scikit-Learn库构建和训练机器学习模型。...介绍 机器学习是人工智能领域的一个关键分支,它使计算机能够从数据中学习和提取模式,从而实现各种任务,如图像分类、文本分析和预测。本文将带您深入机器学习的世界,从理论到实践,逐步构建机器学习模型。...以下是一些可以增加到文章中的内容: 特征工程 详细解释特征工程的概念和重要性,包括特征选择、特征提取和特征转换等。 演示如何使用Scikit-Learn库中的特征工程技术来改善模型性能。...介绍不同的模型评估指标,如准确率、精确度、召回率和F1分数,以及它们在不同问题上的应用。...演示如何使用深度学习框架(如TensorFlow或PyTorch)构建深度学习模型。

    51630

    如何使用sklearn进行在线实时预测(构建真实世界中可用的模型)

    我们介绍下如何使用sklearn进行实时预测。先来看下典型的机器学习工作流。 ? 解释下上面的这张图片: 绿色方框圈出来的表示将数据切分为训练集和测试集。...模型的保存和加载 上面我们已经训练生成了模型,但是如果我们程序关闭后,保存在内存中的模型对象也会随之消失,也就是说下次如果我们想要使用模型预测时,需要重新进行训练,如何解决这个问题呢?...sklearn 提供了 joblib 模型,能够实现完成模型的保存和加载。...# 使用加载生成的模型预测新样本 new_model.predict(new_pred_data) 构建实时预测 前面说到的运行方式是在离线环境中运行,在真实世界中,我们很多时候需要在线实时预测,一种解决方案是将模型服务化...总结 在真实世界中,我们经常需要将模型进行服务化,这里我们借助 flask 框架,将 sklearn 训练后生成的模型文件加载到内存中,针对每次请求传入不同的特征来实时返回不同的预测结果。

    3.9K31

    基于KerasPython的深度学习模型Dropout正则项

    dropout技术是神经网络和深度学习模型的一种简单而有效的正则化方式。 本文将向你介绍dropout正则化技术,并且教你如何在Keras中用Python将其应用于你的模型。...读完本文之后,你将了解: dropout正则化的原理 如何在输入层使用dropout 如何在隐藏层使用dropout 如何针对具体问题对dropout调优 神经网络的Dropout...Keras入门博文: Python Keras (一个超好用的神经网络框架)的使用以及实例 易用的深度学习框架Keras简介 接下来我们看看Dropout在Keras中的一些不同用法。...本例子使用了声呐数据集(Sonar dataset)。这是一个二分类问题,目的是根据声呐的回声来正确地区分岩石和矿区。这个数据集非常适合神经网络模型,因为所有的输入都是数值型的,且具有相同的量纲。...你应该掌握了: dropout的含义和原理 如何在自己的深度学习模型中使用dropout 使用dropout的小技巧 如果你对dropout或者对本文有任何问题,请留言。

    1K90

    现在 tensorflow 和 mxnet 很火,是否还有必要学习 scikit-learn 等框架?

    区别 2:模型封装的抽象化程度不同,给与使用者自由度不同 sklearn 中的模块都是高度抽象化的,所有的分类器基本都可以在 3-5 行内完成,所有的转换器 (如 scaler 和 transformer...clf = svm.SVC() # 初始化一个分类器 clf.fit(X_train, y_train) # 训练分类器 y_predict = clf.predict(X_test) # 使用训练好的分类器进行预测...区别 3:针对的群体、项目不同 sklearn 主要适合中小型的、实用机器学习项目,尤其是那种数据量不大且需要使用者手动对数据进行处理,并选择合适模型的项目。...更常见的情况下,可以把 sklearn 和 tf,甚至 keras 结合起来使用。...因此,以 sklearn 为代表的传统机器学习库(如瑞士军刀般的万能但高度抽象),和以 tf 为代表的自由灵活更具有针对性的深度学习库(如乐高般高度自由但使用繁琐)都是机器学习者必须要了解的工具。

    794100

    怎样在Python的深度学习库Keras中使用度量

    Keras库提供了一种在训练深度学习模型时计算并报告一套标准度量的方法。 除了提供分类和回归问题的标准度量外,Keras还允许在训练深度学习模型时,定义和报告你自定义的度量。...如果你想要跟踪在训练过程中更好地捕捉模型技能的性能度量,这一点尤其有用。 在本教程中,你将学到在Keras训练深度学习模型时,如何使用内置度量以及如何定义和使用自己的度量。...完成本教程后,你将知道: Keras度量的工作原理,以及如何在训练模型时使用它们。 如何在Keras中使用回归和分类度量,并提供实例。 如何在Keras中定义和使用你自定义的度量标准,并提供实例。.../blob/master/keras/losses.py 总结 在本教程中,你已经学会如何在训练深度学习模型时使用Keras度量。...具体来说,你学到了: Keras度量如何原理,以及如何配置模型以在训练期间报告度量。 如何使用Keras内置的分类和回归度量。 如何有效地定义和报告自定义度量,同时训练的深度学习模型。

    2.5K80

    用Keras进行深度学习模式的正则化方法:Dropout

    Dropout是神经网络和深度学习模型的简单而有效的正则化技术。 在这篇文章中,你将发现Dropout正则化技术,以及如何使用Keras将其应用于Python中的模型。...看完这篇文章后,你会知道: Dropout正则化的原理。 如何在输入层上使用Dropout。 如何在隐藏的层上使用Dropout。 如何根据问题调整Dropout。 让我们开始吧。 ?...Keras中的Dropout正则化 每轮权重更新,以给定的概率(例如20%)从随机选择的节点中舍弃,这个过程很容易实现。这就是在Keras中实现Dropout。...Dropout仅在训练模型时使用,在评估模型的技能时不使用。 接下来我们将探讨在Keras中使用Dropout的几种不同方法。 这些例子将使用Sonar数据集。...总结 在这篇文章中,你发现了深度学习模型的Dropout正则化技术。你学了: Dropout的含义和原理。 如何在自己的深度学习模式使用Dropout。 使用Dropout达到最好效果的技巧。

    1.3K60

    用Keras进行深度学习模式的正则化方法:Dropout

    Dropout是神经网络和深度学习模型的简单而有效的正则化技术。 在这篇文章中,你将发现Dropout正则化技术,以及如何使用Keras将其应用于Python中的模型。...看完这篇文章后,你会知道: Dropout正则化的原理。 如何在输入层上使用Dropout。 如何在隐藏的层上使用Dropout。 如何根据问题调整Dropout。 让我们开始吧。...Keras中的Dropout正则化 每轮权重更新,以给定的概率(例如20%)从随机选择的节点中舍弃,这个过程很容易实现。这就是在Keras中实现Dropout。...Dropout仅在训练模型时使用,在评估模型的技能时不使用。 接下来我们将探讨在Keras中使用Dropout的几种不同方法。 这些例子将使用Sonar数据集。...总结 在这篇文章中,你发现了深度学习模型的Dropout正则化技术。你学了: Dropout的含义和原理。 如何在自己的深度学习模式使用Dropout。 使用Dropout达到最好效果的技巧。

    1.2K20

    scikit-learn和tensorflow到底有什么本质区别?

    一个显而易见的不同:tf并未提供sklearn那种强大的特征工程,如维度压缩、特征选择等。...使用自由度不同 sklearn 中的模块都是高度抽象化的,所有的分类器基本都可以在3-5行内完成,所有的转换器(如scaler和transformer)也都有固定的格式。...clf = svm.SVC() # 初始化一个分类器 clf.fit(X_train, y_train) # 训练分类器 y_predict = clf.predict(X_test) # 使用训练好的分类器进行预测...4. scikit-learn&tensorflow结合使用 更常见的情况下,可以把sklearn和tf,甚至keras结合起来使用。...因此,以sklearn为代表的传统机器学习库(如瑞士军刀般的万能但高度抽象),和以tf为代表的自由灵活更具有针对性的深度学习库(如乐高般高度自由但使用繁琐)都是机器学习者必须要了解的工具。

    3.9K50

    20个必知的自动化机器学习库(Python)

    Auto-SKLearn将机器学习用户从算法选择和超参数调整中解放出来。它包括功能设计方法,例如一站式,数字功能标准化和PCA。该模型使用SKLearn估计器来处理分类和回归问题。...最新的分类和回归预测模型(深度学习,堆叠,LightGBM等) 使用模型解释进行预测,MLBox已在Kaggle上进行了测试,并显示出良好的性能。...在mljar-supervised中,将帮助您: 解释和理解您的数据, 尝试许多不同的机器学习模型, 通过分析创建有关所有模型的详细信息的Markdown报告, 保存,重新运行和加载分析和ML模型。...Auto-Keras建立在深度学习框架Keras之上,提供自动搜索深度学习模型的体系结构和超参数的功能。 Auto-Keras遵循经典的Scikit-Learn API设计,因此易于使用。...当前版本提供了在深度学习期间自动搜索超参数的功能。 在Auto-Keras中,趋势是通过使用自动神经体系结构搜索(NAS)算法来简化ML。

    71420

    Sklearn 与 TensorFlow 机器学习实用指南

    本文将为你提供 Sklearn 与 TensorFlow 在实际中的主要应用场景和代码实现方案,并分析其优势和不足。...使用 Sklearn 实现一个简单的分类器 from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split...使用 TensorFlow 构建一个简单的团块分类器 import tensorflow as tf from tensorflow.keras.models import Sequential from...比较总结 实现方案 Sklearn TensorFlow 学习成本 低 高 便捷性 高 中 扩展性 中 高 适用场景 小规模分析,快速原型 大规模应用,高性能混合模型 小资料和常见问题 常见问题 Q&...确保最佳化器选择适宜,如 Adam;控制后端计算进程,例如使用 GPU 或 TPU。 未来前景 Sklearn: 更加重视混合方案,如将其与深度学习结合。

    9810

    【人工智能】全景解析:【机器学习】【深度学习】从基础理论到应用前景的【深度探索】

    不同类型的算法适用于不同的任务,如分类、回归、聚类等。 常见算法:线性回归、决策树、支持向量机、神经网络等。 实例:在分类任务中,使用支持向量机算法可以有效地将数据点分为不同的类别。...实例:使用鸢尾花数据集进行分类,代码示例如下: from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split...实例:使用Keras构建一个简单的CNN模型进行CIFAR-10图像分类,代码示例如下: 池化操作:通过最大池化或平均池化缩减特征图的尺寸,减少计算复杂度。...如何在保护隐私的同时发挥AI的潜力是一个重大挑战。 实例:面部识别技术在公共场所的应用,引发了关于隐私保护的争议。 讨论:AI系统中的偏见和歧视问题广受关注,特别是在决策系统中,如招聘、贷款审批等。...AI模型可能因训练数据中的偏见而做出不公平的决策。 实例:银行贷款审批系统中的种族偏见问题。 讨论:AI决策过程的黑箱问题使得结果难以解释,尤其是在深度学习模型中。

    19510
    领券