首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

深度学习预测分子系统的平衡分布

今天为大家介绍的是来自微软研究团队的一篇关于分子构象的论文。深度学习的进步极大地改善了分子的结构预测。然而,对于真实世界的应用而言,许多重要的宏观观察并不是单一分子结构的函数,而是由结构的平衡分布确定的。传统的获取这些分布的方法,如分子动力学模拟,计算代价高昂且常常难以处理。在本文中,作者引入了一种新颖的深度学习框架,称为分布图变换器(DiG),旨在预测分子系统的平衡分布。通过展示DiG在几个分子任务上的性能,包括蛋白质构象采样、配体结构采样、催化剂吸附采样和基于性质的结构生成,DiG在统计理解分子系统的方法学方面具有重大进展,为分子科学开辟了新的研究机会。

04

生信爱好者周刊(第 61 期):基因对寿命的影响

@NiEntropy - 想到了生物课本中的一句话:生物的性状是由基因决定的,而基因的表达受环境因素影响;想到了秦始皇炼丹渡海寻仙求长生,Google投资Calico专注衰老研究。从古至今,人类一直在追寻着长寿,而在日复一日的生活中,我更感兴趣未来会是什么样?是像《赛博朋克:边缘行者》中“低端生活与高等科技结合”的悲剧,还是我们共同的理想:在高度发达的社会生产力和广大共识范围,人们科学文化水平和思想觉悟,道德水平极大提高的基础上,实行各尽所能、按需分配原则的劳动者有序自由联合的社会经济形态。未来源于当下,还是要脚踏实地把当下的工作干好。

03

PNAS | 一种用于蛋白质侧链装配和逆向折叠的端到端深度学习方法

今天为大家介绍的是来自Jinbo Xu研究团队的一篇关于蛋白质结构预测的论文。蛋白质侧链装配(Protein side-chain packing,PSCP)是指在只给定主链原子位置的情况下确定氨基酸侧链构象的任务,对蛋白质结构预测、精化和设计具有重要应用。了解决这个问题,作者提出了AttnPacker,一种用于直接预测蛋白质侧链坐标的深度学习(DL)方法。与现有方法不同,AttnPacker直接利用主链的三维几何信息,同时计算所有侧链的坐标,而无需借助离散的构象库或进行昂贵的构象搜索和采样步骤。这大大提高了计算效率,相比基于DL的方法DLPacker和基于物理的RosettaPacker,推理时间减少了超过100倍。

01

CELL SYST|多目标神经网络框架预测化合物-蛋白相互作用和亲和力

这次给大家介绍清华大学交叉信息研究院的曾坚阳教授课题组在Cell Systems上发表的论文“MONN: A Multi-objective Neural Network for Predicting Compound-Protein Interactions and Affinities”。分析化合物与蛋白质的相互作用 (Compound-Protein Interactions ,CPIs)在药物研发过程中起着至关重要的作用,迅速准确地预测作用位点和其间的亲和力有利于高效的药物研发。基于此问题,曾坚阳教授课题组引入深度学习,提出了一种预测化合物-蛋白相互作用和亲和力的多目标神经网络-MONN。作者在方法中引入了(i)捕获全局特征的超级节点、(ii)预测亲和力的GRU模块(Gate Recurrent Unit,门循环单元模型)、(iii)预测化合物-蛋白结合位点和判断其间的亲和力指标的多目标共享特征结构,使得其模型具有比现有模型更好的特征可解释性,有效捕捉了化合物与蛋白质的内在特征与联系,实现精确判断分子间的相互作用和亲和力。

02

Nat. Methods | 利用深度学习进行基于生物物理学和数据驱动的分子机制建模

本文介绍由美国马萨诸塞州波士顿哈佛医学院系统生物学系系统药理学实验室的Mohammed AlQuraishi等人发表于Nature Methods 的研究成果:研究人员报道了可微程序与分子和细胞生物学结合产生的新兴门类:“可微生物学”。本文作者介绍了可微生物学的一些概念并作了两个案例说明,展示了如何将可微生物学应用于整合跨生物实验中产生的多模态数据,解决这一存在已久的问题将促进生物物理和功能基因组学等领域的发展。作者讨论了结合生物和化学知识的ML模型如何克服稀疏的、不完整的、有噪声的实验数据造成的限制。最后,作者总结了它面临的挑战以及它可能扩展的新领域,可微编程仍有很多可发挥的空间,它将继续影响科技的发展。

02

Nat. Med. | 基于深度学习的蛋白质-蛋白质相互作用分析预测SARS-CoV-2的传染性与变异进化

今天我们介绍由北京邮电大学网络与交换技术国家重点实验室的王光宇等学者发表在Nature Medicine上的工作。该工作介绍了一个基于人工智能框架UniBind,该框架利用深度学习和蛋白质结构分析来预测SARS-CoV-2的刺突蛋白突变的影响。该工作强调了在病毒宿主相互作用和新的SARS-CoV-2变体出现中理解蛋白质相互作用的重要性。UniBind整合了蛋白质三维结构和结合亲和力数据,预测了刺突蛋白突变如何影响其与人类ACE2受体和中和抗体的结合亲和力。该框架在基准数据集上进行了测试,并通过实验证实了其有效性。UniBind还能够有效预测刺突蛋白变体对结合亲和力的影响,并可以应用于预测宿主对SARS-CoV-2变体的易感性和未来病毒变体的进化趋势。该工作强调了UniBind作为问题变体的预警系统的潜力,以及其促进蛋白质相互作用研究的能力。总体而言,UniBind使用异质数据集提供了全面且高容量的蛋白质相互作用分析,有助于人类理解SARS-CoV-2的感染性和变体进化。

03

斯坦福、微软联手,用扩散模型进行蛋白质结构生成,已开源

机器之心报道 机器之心编辑部 尽管最近研究者在蛋白质结构预测方面取得了进展,但从神经网络直接生成不同的、新颖的蛋白质结构仍然很困难。在这项工作中,本文提出了一种新的基于扩散的生成模型,该模型通过一种反映蛋白质原生折叠过程的过程来设计蛋白质的主链结构。 蛋白质对生命至关重要,几乎在每个生物过程中都发挥着作用。一方面它们能在神经元之间传递信号、识别微观入侵者并激活免疫反应等。另一方面,蛋白质作为一种治疗介质已经得到广泛研究,成为治疗疾病的一部分。因此,通过生成新的、物理上可折叠的蛋白质结构,打开了利用细胞通路治

03

深度森林第三弹:周志华组提出可做表征学习的多层梯度提升决策树

选自arXiv 作者:冯霁、俞扬、周志华 机器之心编译 自去年周志华等研究者提出了「深度森林」以后,这种新型的层级表征方式吸引了很多研究者的关注。今日,南京大学的冯霁、俞扬和周志华提出了多层梯度提升决策树模型,它通过堆叠多个回归 GBDT 层作为构建块,并探索了其学习层级表征的能力。此外,与层级表征的神经网络不同,他们提出的方法并不要求每一层都是可微,也不需要使用反向传播更新参数。因此,多层分布式表征学习不仅有深度神经网络,同时还有决策树! 近十年来,深层神经网络的发展在机器学习领域取得了显著进展。通过构建

04

Nat. Comput. Sci. | 基于拓扑表面和几何结构的3D分子生成方法

今天为大家介绍的是来自侯廷军教授团队的一篇论文。计算机辅助药物发现的一个重大挑战是高效地从头设计药物。虽然近年来已经开始有一些针对特定结构的三维分子生成方法,但多数方法并没有完全学习到决定分子形态和结合复合物稳定性的原子间互动细节。因此,很多模型难以为各种治疗目标生成合理的分子。为了解决这个问题,作者提出了一个名为SurfGen的模型。这个模型设计分子的方式就像锁和钥匙原理一样。SurfGen由两个等变神经网络组成,它们分别捕捉口袋表面的拓扑互动和配体原子与表面节点之间的空间互动。SurfGen在多个基准测试中的表现优于其他方法,并且对口袋结构的高敏感性为解决由突变引起的药物耐受性问题提供了有效的解决方案。

04

Nature | 刘海燕/陈泉:蛋白质从头设计的神经网络能量函数

蛋白质是生命的基础,是生命功能的主要执行者,其结构与功能由氨基酸序列所决定。目前,能够形成稳定三维结构的蛋白质,几乎全部是天然蛋白质,其氨基酸序列是长期自然进化形成。在天然蛋白结构功能不能满足工业或医疗应用需求时,想要得到特定的功能蛋白,就需要对其结构和序列进行设计。目前,国际上已报道的蛋白质结构从头设计工作使用天然结构片段作为构建模块来拼接产生新结构。这种方法显著限制了人工设计蛋白的结构多样性和可变性。对蛋白质从头设计中最困难的问题,即如何充分地探索蛋白质主链结构空间,从头发现新颖的、“高可设计性”主链结构,还缺乏系统性的方法。

04

Nat.Commun. | DynamicBind:基于几何深度学习的动态复合物结构预测模型

基于AlphaFold2的静态蛋白结构预测方法已经接近实验精度,为结构生物领域带来了巨大的影响。然而,在药物开发中,靶蛋白的功能性运动非常关键,它会对药物的活性产生影响,而目前的算法模型无法捕捉到大分子的功能构象动态变化过程。近日,上海交通大学郑双佳课题组与星药科技研究团队,美国莱斯大学Peter G. Wolynes联合团队在《Nature Communications》发表题为“DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model”的研究论文。该论文提出的新方法DynamicBind可基于AF2预测的初始非结合构象,生成与对应输入药物分子相匹配的蛋白结合构象及转化过程,并在计算过程中自动寻找口袋位置,让对接中发现隐藏口袋成为可能。该研究对于蛋白质功能机制的理解以及难成药靶点的药物筛选具有重要意义,为后AlphaFold时代的药物研发提供了一种基于深度学习的,考虑蛋白动态变化的新范式。

01

Nat. Commun. | 多尺度相互作用网络鉴定疾病治疗机制

今天给大家介绍斯坦福大学Jure Leskovec教授团队在Nature Communications上发表的一篇文章“Identification of disease treatment mechanisms through the multiscale interactome”。在这项工作中,作者构建了一个多尺度相互作用网络,该网络整合了疾病扰动蛋白、药物靶标和生物功能。基于该网络,作者开发了一种随机游走方法,捕获药物作用如何在蛋白质相互作用和生物功能的层次结构中传播。实验结果表明,多尺度相互作用网络可以预测药物疾病的治疗,鉴定与治疗有关的蛋白质和生物学功能,并预测可改变治疗功效和不良反应的基因。另外,仅通过蛋白质之间的相互作用不能对治疗机制进行解释,因为许多药物通过影响被疾病破坏的生物功能来治疗疾病,而不是直接作用于疾病蛋白。

02
领券