需要注意的是,在Pandas中,scatter不支持Series对象,只支持DataFrame对象,所以不能用Series对象绘制散点图。...绘制散点图时,通过x参数和y参数指定散点图的x轴数据和y轴数据。x和y都是DataFrame中的列标签,绘图时会根据列标签读取对应列的数据。 s: 使用s参数设置散点图中点的大小。...在Pandas中,绘制图形除了在plot()中指定kind参数外,还可以通过plot链式调用对应的方法,如plot.scatter()表示绘制散点图,后面绘制柱状图、直方图、饼图等也可以用链式调用的方式...s参数也可以设置成一个数组,如例子中也是用numpy生成一个随机的数组,使每个点的大小不一样。...当然,在设置x轴刻度值,y轴刻度值,数值标签等时要注意方向的转换。 六、绘制直方图 使用plot链式调用hist()方法,或在plot()中设置kind为hist,都可以绘制直方图。
,pandas,seaborn绘制直方图 下面,我们来逐一介绍每种方法的来龙去脉。...pandas.DataFrame.histogram() 的用法与Series是一样的,但生成的是对DataFrame数据中的每一列的直方图。...现在,我们可以在同一个Matplotlib轴上绘制每个直方图以及对应的kde,使用pandas的plot.kde()的好处就是:它会自动的将所有列的直方图和kde都显示出来,用起来非常方便,具体代码如下...在Pandas中的其它工具 除了绘图工具外,pandas也提供了一个方便的.value_counts() 方法,用来计算一个非空值的直方图,并将之转变成一个pandas的series结构,示例如下: >...更多请查阅np.digitize() 数据存在于在Pandas的Series和DataFrame对象中 Pandas方法,比如, Series.plot.hist(),DataFrame.plot.hist
你可以从其基本组件中组装一个图表:数据显示(即绘图的类型:线、条、框、散点图、轮廓等)、图例、标题、刻度标记和其他注释。 在pandas中,我们可能有多个数据列,并且带有行和列的标签。...pandas自身有很多内建方法可以简化从DataFrame和Series对象生成可视化的过程。另一个是seaborn,它是由Michael Waskom创建的统计图形库。...DataFrame的plot方法在同一个子图中将每一列绘制为不同的折线,并自动生成图例(见图9-14): In [62]: df = pd.DataFrame(np.random.randn(10, 4...方法参数 DataFrame拥有多个选项,允许灵活地处理列;例如,是否将各列绘制到同一个子图中,或为各列生成独立的子图。...▲图9-19 用错误栏按天显示小费百分比 seaborn中的绘图函数使用一个data参数,这个参数可以是pandas的DataFrame。其他的参数则与列名有关。
1) 结构相对数:将同一总体内的部分数值与全部数值对比求得比重,用以说明事物的 性质、结构或质量。如居民食品支出额占消费支出总额比重、产品合格率等。...2) 比例相对数:将同一总体内不同部分的数值进行对比,表明总体内各部分的比例关 系。如人口性别比例、投资与消费比例等。...将所有数值由小到大排列并分成四等份,处于 第一个分割点位置的数值是下四分位数,处于第二个分割点位置(中间位置)的数值是中位 数,处于第三个分割点位置的数值是上四分位数。...hist() 绘制二维条形直方图,可显示数据的分配情形 Matplotlib/Pandas boxplot() 绘制样本数据的箱形图 Pandas plot(logy = True) 绘制y轴的对数图形...实例:绘制二维条形直方图,随机生成有1000个元素的服从正态分布的数组,分成10组绘制直方图。绘制结果如图3-15所示。
# pandas.cut() 也同样是一个方便的方法,用来将数据进行强制的分箱 # 将一系列数值分成若干份 #cut()方法,参数bin指明切分区间,左开右闭区间。...pandas也提供了一个方便的.value_counts() 方法,用来计算一个非空值的直方图,并将之转变成一个pandas的series结构:df.年龄.value_counts() Seaborn模块...Python实现histogram方法 #生成直方图 # count_elements() 返回了一个字典,字典里的键值对:所有数值出现的频率次数。...6)、fit:指定一个随机分布对象,需调用scipy模块中随机分布函数,用于绘制随机分布概率密度曲线。 7)、hist_kws:以字典形式传递直方图的其他修饰属性,如填充色、边框色、宽度等。...8)、kde_kws:以字典形式传递核密度图的其他修饰属性,如线的颜色、线的类型等。 9)、rug_kws:以字典形式传递须图的其他修饰属性,如线的颜色、线的宽度等。
:合并多个dataframe,类似sql中的union pivot:按照指定的行列重塑表格 pivot_table:数据透视表,类似excel中的透视表 cut:将一组数据分割成离散的区间,适合将数值进行分类...qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列“堆叠”为一个层次化的...describe:生成分组的描述性统计摘要 first和 last:获取分组中的第一个和最后一个元素 nunique:计算分组中唯一值的数量 cumsum、cummin、cummax、cumprod:...astype: 将一列的数据类型转换为指定类型 sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化 pandas.DataFrame.plot.area...:绘制直方图 pandas.DataFrame.plot.line:绘制线型图 pandas.DataFrame.plot.pie:绘制饼图 pandas.DataFrame.plot.scatter:
( figsize=(800, 450), # 图的宽度和高度 y="苹果", # y的值,这里选择的是df数据中的苹果列 title="苹果", # 标题 xlabel...(上图中我们绘制的是2017年的数据),则无需对y赋值,结果会嵌套显示在一个图中: df_pie.plot_bokeh.pie( x="Partei", colormap=["blue"...直方图 在绘制直方图时,有不少参数可供选择: bins:确定用于直方图的 bin,如果 bins 是 int,则它定义给定范围内的等宽 bin 数量(默认为 10),如果 bins 是一个序列,它定义了...: weights:DataFrame 的一列,用作 histogramm 聚合的权重(另请参见numpy.histogram) normed:如果为 True,则直方图值被归一化为 1(直方图值之和...也可以传递一个整数,例如normed=100将导致带有百分比 y 轴的直方图(直方图值的总和 = 100),默认值:False cumulative:如果为 True,则显示累积直方图,默认值:False
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。... Pandas 库创建一个空数据帧以及如何向其追加行和列。
_1='column_1', encoding_2='column_2', etc. ) Data:Altair内部使用的数据以Pandas中的Dataframe格式存储,但有以下三种方式传入: 以Pandas...的DataFrame格式传入; 以Data对象传入; 以指向csv或json文本的url传入; Mark:定义好数据之后,需要选择显示的图形比如条形图、折线图、面积图、散点图、直方图、地图等各种交互式图表...Encoding:编码方式定义了图片显示的各种属性,如每个图片的位置,图片轴的属性等。这部分是最重要的,记住关键的几个就行。...位置通道:定义位置相关属性: x: x轴数值 y: y轴数值 row: 按行分列图片 column: 按列分列图片 通道描述: color: 标记点颜色 opacity: 标记点的透明度 shape:...Altair还为创建交互式图像提供了一个selection的API,在选择功能上,我们能做出一些更酷炫的高级功能,例如本文开头处展示的GIF,对选中的数据点进行统计,生成实时的直方图。
热力图 热力图在实际中常用于展示一组变量的相关系数矩阵,在展示列联表的数据分布上也有较大的用途,通过热力图我们可以非常直观地感受到数值大小的差异状况。...PairGrid 成对关系子图 子图网格,用于在数据集中绘制成对关系。 此类将数据集中的每个变量映射到多轴网格中的列和行。...pandas可视化[2]中,可以使用Series和DataFrame上的plot方法,它只是一个简单的包装器 plt.plot(),另外还有一些有几个绘图功能在pandas.plotting 内。...平行坐标 平行坐标[4]是一种用于绘制多元数据的绘制技术 。平行坐标允许人们查看数据中的聚类,并直观地估计其他统计信息。使用平行坐标点表示为连接的线段。每条垂直线代表一个属性。...如果时间序列不是随机的,则一个或多个自相关将明显为非零。图中显示的水平线对应于95%和99%的置信带。虚线是99%置信带。
DataFrame的plot方法会在一个subplot中为各列绘制一条线,并自动创建图例,如下所示: ?...DataFrame还有一些用于对列进行灵活处理的选项,例如,是要将所有列都绘制到一个subplot中还是创建各自的subplot,详细信息如下所示: ? ?...DataFrame各列的名称“Genus”被用作了图例的标题。...12、直方图和密度图 直方图(histogram)是一种可以对值频率进行离散化显示的柱状图。数据点被拆分到离散的、间隔均匀的面元中,绘制的是各面元中数据点的数量。...纯手工创建这样的图表很费工夫,所以pandas提供了一个能从DataFrame创建散布图矩阵的scatter_matrix函数。它还支持在对角线上放置各变量的直方图或密度图。
("sin(x) & 2sin(x)") plt.show() 设置坐标轴 通过 xlim 和 ylim 来限定坐标轴的范围,只能确定一个数值区间 通过 xlabel 和 ylabel 来设置坐标轴的名称...该函数的第一个参数代表子图的总行数,第二个参数代表子图的 总列数,第三个参数代表活跃区域 ax1 = plt.subplot(2, 2, 1) # (行,列,活跃区) plt.plot(x, np.sin...我们可以使用x和y关键字绘制一列与另一列。 绘图方法允许除默认线图之外的少数绘图样式。 这些方法可以作为plot()的kind关键字参数提供。...(stacked=True) 直方图 可以使用plot.hist()方法绘制直方图。...np.random.randn(1000),'c': np.random.randn(1000) - 1}, columns=['a', 'b', 'c']) df.plot.hist(bins=20) 要为每列绘制不同的直方图
以下代码导入可视化所需的必要库和数据集,然后在输出中显示 DataFrame 的内容。...探索和可视化数据了,开始吧 折线图 plot 默认图就是折线图,它在 x 轴上绘制索引,在 y 轴上绘制 DataFrame 中的其他数字列。...直方图是一种表示数值数据分布的条形图,其中 x 轴表示 bin 范围,而 y 轴表示某个区间内的数据频率。...分配给堆叠参数来取消堆叠面积图是一项常见任务: df.plot(kind='area', stacked=False, figsize=(9,6)) Output: 饼图 如果我们对比率感兴趣,饼图是列中数值数据的一个很好的比例表示...KDE 绘图 我们要讨论的最后一个图是核密度估计,也称为 KDE,它可视化连续和非参数数据变量的概率密度。
('salary', ascending=False) 30.取出第33行数据 df.loc[32] 31.计算salary列的中位数 np.median(df['salary']) 32.绘制薪资水平频率分布直方图....同时绘制开盘价与收盘价 data[['收盘价(元)','开盘价(元)']].plot() 59.绘制涨跌幅的直方图 plt.hist(df['涨跌幅(%)']) # 等价于 df['涨跌幅(%)']....hist() 60.让直方图更细致 data['涨跌幅(%)'].hist(bins = 30) 61.以data的列名创建一个dataframe temp = pd.DataFrame(columns...= pd.DataFrame(tem) df2 84.从NumPy数组创建DataFrame #备注 使用numpy生成20个指定分布(如标准正态分布)的数 tem = np.random.normal...[:3] 91.提取第一列中可以整除5的数字位置 np.argwhere(df['col1'] % 5==0) 92.计算第一列数字前一个与后一个的差值 df['col1'].diff().tolist
上,plot()可以方便地用标签绘制所有列: 可以使用plot()中的x和y关键字绘制一列与另一列的对比,比如我们想要使用星期六的客流量和星期日的客流量作对比: df_flow_7=df_flow[df_flow...现有接口DataFrame.hist,但仍然可以使用hist绘制直方图 plt.figure() df_flow_mark['风级'].hist() DataFrame.hist()可以在多个子地块上绘制列的直方图...下面的示例显示了一个气泡图,它使用DataFrame的一列作为气泡大小。...在本例中,位置由a列和b列给出,而值由z列给出。这些箱子通过NumPy的max函数进行聚合。...带有DataFrame的饼图需要通过y参数或subplots=True指定目标列。当指定y时,将绘制所选列的饼图。如果指定subplots=True,则每个列的饼图都将绘制为subplots。
() 我们就可以在同级目录中看到生成的一个Excel文件,在不同的Sheet当中分别存放着指定的数据集 将多个DataFrame数据集放在一张Sheet当中 将多个DataFrame数据集放在同一张Sheet...当中,通过当中的参数startcol与startrow,顾名思义就是从哪一行、哪一列开始 df1 = pd.DataFrame({'Data': [11, 13, 15, 17]}) df2 = pd.DataFrame...Sheet1', startrow=10, startcol=15, header=False, index=False) writer.save() 如下图所示 针对表格中的数据绘制直方图...下面我们来看一下,如何利用Pandas来根据表格中的数据绘制柱状图,并且保存在Excel表格当中,在xlsxwriter模块当中有add_chart()方法,提供了9中图表的绘制方法,我们先来看一下柱状图的绘制...我们尝试来绘制一个直方图,并且添加上这些辅助信息 import xlsxwriter workbook = xlsxwriter.Workbook('chart.xlsx') worksheet =
(100).cumsum() df = pd.DataFrame(data, index=idx, columns=['value']) # 使用 hvplot 绘制线图 plot = df.hvplot.line...示例 2:散点图和直方图 继续利用 HvPlot,我们可以很容易地绘制散点图和直方图来查看变量之间的关系和分布: # 创建一些随机数据 df = pd.DataFrame({ 'x': np.random.rand...") scatter_plot # 绘制直方图 histogram = df.hvplot.hist('x', bins=20, title="直方图示例") histogram 在散点图中,每个点的位置反映了数据表中的一行记录...='value', by='variable', title="箱型图示例", width=400) boxwhisker 这个箱型图将会按照 'variable' 列的类别来显示 'value' 列的分布情况...如果是在纯 Python 环境中,需要使用dashboard.show()来启动一个服务器,并在浏览器中查看面板。 这只是 HvPlot 功能的冰山一角。
Pandas和NumPy是Python用于数据科学的核心库,pandas提供数据框架,而NumPy则提供了广泛的数值计算操作。...Matplotlib和SeabornMatplotlib是一个Python 2D绘图库,可以用于创建各种图形,如线图、散点图、多边形、条形图、直方图、图像等。...=1, ncols=2, figsize=(10, 5))# 在第1个坐标轴中绘制一个直方图sns.histplot(data, x='age', kde=True, ax=axes[0])# 在第2个坐标轴中绘制一个散点图...在第一个图表中,我们使用Seaborn的histplot()函数绘制了一个直方图,展示年龄的分布情况。...在第二个图表中,我们使用Seaborn的scatterplot()函数绘制了一个散点图,展示年龄与收入之间的关系。我们使用不同的颜色来表示不同的性别。2.
作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大。...我们可以使用x和y关键字绘制一列与另一列。 ...DataFrame的plot 方法会在 一个 subplot 中为各列绘制 一条 线, 并自动创建图例( 如图所示): df = DataFrame( np. random. randn( 10,...)方法绘制直方图。...np.random.randn(1000) - 1}, columns=['a', 'b', 'c']) df.plot.hist(bins=20) Python 执行上面示例代码,得到以下结果 - 要为每列绘制不同的直方图
领取专属 10元无门槛券
手把手带您无忧上云