首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在pyspark中过滤RDD时做两个测试?

在pyspark中过滤RDD时进行两个测试可以通过以下步骤实现:

  1. 创建一个RDD:首先,使用SparkContext对象创建一个RDD。例如,可以使用parallelize()方法从一个已有的集合创建RDD。例如,创建一个包含整数的RDD可以使用以下代码:from pyspark import SparkContext sc = SparkContext() data = [1, 2, 3, 4, 5] rdd = sc.parallelize(data)
  2. 过滤RDD:使用filter()方法对RDD进行过滤。该方法接受一个函数作为参数,该函数定义了过滤条件。只有满足条件的元素才会被保留在RDD中。例如,可以使用以下代码过滤RDD中的偶数:filtered_rdd = rdd.filter(lambda x: x % 2 == 0)
  3. 执行测试:可以使用collect()方法将过滤后的RDD转换为一个列表,并对结果进行断言来进行测试。例如,可以使用以下代码对过滤后的RDD进行测试:assert filtered_rdd.collect() == [2, 4]
  4. 另一种测试方法是使用count()方法来检查过滤后的RDD中元素的数量是否符合预期。例如,可以使用以下代码进行测试:assert filtered_rdd.count() == 2

这样,就可以在pyspark中过滤RDD时进行两个测试了。根据具体的需求,可以根据过滤条件和预期结果进行适当的断言和验证。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

PySpark简介

本指南介绍如何在单个Linode上安装PySpark。PySpark API将通过对文本文件的分析来介绍,通过计算得到每个总统就职演说中使用频率最高的五个词。...本指南的这一部分将重点介绍如何将数据作为RDD加载到PySpark中。...然后,一些PySpark API通过计数等简单操作进行演示。最后,将使用更复杂的方法,如过滤和聚合等函数来计算就职地址中最常用的单词。...flatMap允许将RDD转换为在对单词进行标记时所需的另一个大小。 过滤和聚合数据 1. 通过方法链接,可以使用多个转换,而不是在每个步骤中创建对RDD的新引用。...在过滤时,通过删除空字符串来清理数据。然后通过takeOrdered返回的前五个最频繁的单词对结果进行排序。

6.9K30

强者联盟——Python语言结合Spark框架

得益于在数据科学中强大的表现,Python语言的粉丝遍布天下,如今又遇上强大的分布式内存计算框架Spark,两个领域的强者走到一起,自然能碰出更加强大的火花(Spark可以翻译为火花),因此PySpark...pyspark与spark-shell都能支持交互式测试,此时便可以进行测试了。相比于Hadoop来说,基本上是零配置即可以开始测试。...spark-shell测试: pyspark测试: 分布式部署 上面的环境测试成功,证明Spark的开发与测试环境已经配置好了。但是说好的分布式呢?...因为Scala较Python复杂得多,因此先学习使用PySpark来写程序。 Spark有两个最基础的概念,sc与RDD。...reduce的参数依然为一个函数,此函数必须接受两个参数,分别去迭代RDD中的元素,从而聚合出结果。

1.3K30
  • PySpark UD(A)F 的高效使用

    这两个主题都超出了本文的范围,但如果考虑将PySpark作为更大数据集的panda和scikit-learn的替代方案,那么应该考虑到这两个主题。...由于主要是在PySpark中处理DataFrames,所以可以在RDD属性的帮助下访问底层RDD,并使用toDF()将其转换回来。这个RDD API允许指定在数据上执行的任意Python函数。...当在 Python 中启动 SparkSession 时,PySpark 在后台使用 Py4J 启动 JVM 并创建 Java SparkContext。...下图还显示了在 PySpark 中使用任意 Python 函数时的整个数据流,该图来自PySpark Internal Wiki....在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。

    19.7K31

    第3天:核心概念之RDD

    RDD是不可变数据,这意味着一旦创建了RDD,就无法直接对其进行修改。此外,RDD也具有容错能力,因此在发生任何故障时,它们会自动恢复。 为了完成各种计算任务,RDD支持了多种的操作。...计算:将这种类型的操作应用于一个RDD后,它可以指示Spark执行计算并将计算结果返回。 为了在PySpark中执行相关操作,我们需要首先创建一个RDD对象。...在下面的示例中,我们在foreach中调用print函数,该函数打印RDD中的所有元素。...) filter(function)函数 filter函数传入一个过滤器函数,并将过滤器函数应用于原有RDD中的所有元素,并将满足过滤器条件的RDD元素存放至一个新的RDD对象中并返回。...在下面的例子中,在两个RDD对象分别有两组元素,通过join函数,可以将这两个RDD对象进行合并,最终我们得到了一个合并对应key的value后的新的RDD对象。

    1.1K20

    Pyspark学习笔记(四)弹性分布式数据集 RDD 综述(下)

    1.广播变量(只读共享变量) i 广播变量 ( broadcast variable) ii 创建广播变量 2.累加器变量(可更新的共享变量) 系列文章目录: ---- 前言 本篇主要讲述了如何在执行...PySpark 通过使用 cache() 和persist() 提供了一种优化机制,来存储 RDD 的中间计算,以便它们可以在后续操作中重用。...当持久化或缓存一个 RDD 时,每个工作节点将它的分区数据存储在内存或磁盘中,并在该 RDD 的其他操作中重用它们。...当没有足够的可用内存时,它不会保存某些分区的 DataFrame,这些将在需要时重新计算。这需要更多的存储空间,但运行速度更快,因为从内存中读取需要很少的 CPU 周期。...MEMORY_AND_DISK 在此存储级别,RDD 将作为反序列化对象存储在 JVM 内存中。当所需的存储空间大于可用内存时,它会将一些多余的分区存储到磁盘中,并在需要时从磁盘读取数据。

    2K40

    Spark 编程指南 (一) [Spa

    RDD的分区结构不变,主要是map、flatmap 输入输出一对一,但结果RDD的分区结构发生了变化,如union、coalesce 从输入中选择部分元素的算子,如filter、distinct、subtract...RDD分区 对单个RDD基于key进行重组和reduce,如groupByKey、reduceByKey 对两个RDD基于key进行jion和重组,如jion 对key-value数据类型RDD的分区器...、Mesos或者YARN集群的URL,如果是本地运行,则应该是特殊的'local'字符串 在实际运行时,你不会讲master参数写死在程序代码里,而是通过spark-submit来获取这个参数;在本地测试和单元测试中...Spark中所有的Python依赖(requirements.txt的依赖包列表),在必要时都必须通过pip手动安装 例如用4个核来运行bin/pyspark: ....spark-submit脚本 在IPython这样增强Python解释器中,也可以运行PySpark Shell;支持IPython 1.0.0+;在利用IPython运行bin/pyspark时,必须将

    2.1K10

    PySpark初级教程——第一步大数据分析(附代码实现)

    PySpark以一种高效且易于理解的方式处理这一问题。因此,在本文中,我们将开始学习有关它的所有内容。我们将了解什么是Spark,如何在你的机器上安装它,然后我们将深入研究不同的Spark组件。...我们要求Spark过滤大于200的数字——这本质上是一种转换。Spark有两种类型的转换: 窄转换:在窄转换中,计算单个分区结果所需的所有元素都位于父RDD的单个分区中。...例如,如果希望过滤小于100的数字,可以在每个分区上分别执行此操作。转换后的新分区仅依赖于一个分区来计算结果 ? 宽转换:在宽转换中,计算单个分区的结果所需的所有元素可能位于父RDD的多个分区中。...假设我们有一个文本文件,并创建了一个包含4个分区的RDD。现在,我们定义一些转换,如将文本数据转换为小写、将单词分割、为单词添加一些前缀等。...在这里,我们把单词小写,取得每个单词的前两个字符。

    4.5K20

    Pyspark学习笔记(四)弹性分布式数据集 RDD(下)

    pyspark任务时候缓存或者共享变量,以达到节约资源、计算量、时间等目的 一、PySpark RDD 持久化 参考文献:https://sparkbyexamples.com/pyspark-rdd...PySpark 通过使用 cache()和persist() 提供了一种优化机制,来存储 RDD 的中间计算,以便它们可以在后续操作中重用。...当持久化或缓存一个 RDD 时,每个工作节点将它的分区数据存储在内存或磁盘中,并在该 RDD 的其他操作中重用它们。...当没有足够的可用内存时,它不会保存某些分区的 DataFrame,这些将在需要时重新计算。这需要更多的存储空间,但运行速度更快,因为从内存中读取需要很少的 CPU 周期。...MEMORY_AND_DISK 在此存储级别,RDD 将作为反序列化对象存储在 JVM 内存中。当所需的存储空间大于可用内存时,它会将一些多余的分区存储到磁盘中,并在需要时从磁盘读取数据。

    2.7K30

    Pyspark学习笔记(五)RDD操作(三)_键值对RDD转换操作

    就是键值对RDD,每个元素是一个键值对,键(key)为省份名,值(Value)为一个list 1.keys() 该函数返回键值对RDD中,所有键(key)组成的RDD pyspark.RDD.keys...', 'Guangdong', 'Jiangsu'] 2.values() 该函数返回键值对RDD中,所有值(values)组成的RDD pyspark.RDD.values # the example...pyspark.RDD.reduceByKey 使用一个新的原始数据rdd_test_2来做示范 rdd_test_2 = spark.sparkContext.parallelize([ ('A',...), ('B',[100, 40, 50, 60, 100, 4, 5, 6]) ] 此处也是用了不同分区的同样的数据来做测试,在我们讲普通RDD的 fold 操作时说过,zeroValue出现的数目应该是...pyspark.RDD.aggregateByKey 该操作也与之前讲的普通RDD的 aggregate 操作类似,只不过是针对每个不同的Key做aggregate;再此就不再举例了。

    1.9K40

    python中的pyspark入门

    Python中的PySpark入门PySpark是Python和Apache Spark的结合,是一种用于大数据处理的强大工具。它提供了使用Python编写大规模数据处理和分析代码的便利性和高效性。...安装pyspark:在终端中运行以下命令以安装pyspark:shellCopy codepip install pyspark使用PySpark一旦您完成了PySpark的安装,现在可以开始使用它了。...除了DataFrame,PySpark还提供了一个更底层的抽象概念,名为弹性分布式数据集(RDD)。...但希望这个示例能帮助您理解如何在实际应用场景中使用PySpark进行大规模数据处理和分析,以及如何使用ALS算法进行推荐模型训练和商品推荐。PySpark是一个强大的工具,但它也有一些缺点。...学习PySpark需要掌握Spark的概念和RDD(弹性分布式数据集)的编程模型,并理解如何使用DataFrame和Spark SQL进行数据操作。

    52920

    3万字长文,PySpark入门级学习教程,框架思维

    pyspark.RDD:http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD...之后的flatMap结果: ['hello', 'SamShare', 'hello', 'PySpark'] # 3. filter: 过滤数据 rdd = sc.parallelize(range...使用cache()方法时,实际就是使用的这种持久化策略,性能也是最高的。 MEMORY_AND_DISK 优先尝试将数据保存在内存中,如果内存不够存放所有的数据,会将数据写入磁盘文件中。...假如某个节点挂掉,节点的内存或磁盘中的持久化数据丢失了,那么后续对RDD计算时还可以使用该数据在其他节点上的副本。如果没有副本的话,就只能将这些数据从源头处重新计算一遍了。一般也不推荐使用。 2....join被改写为 broadcast+map的PySpark版本实现,不过里面有两个点需要注意: tips1: 用来broadcast的RDD不可以太大,最好不要超过1G tips2: 用来broadcast

    10K21

    Pyspark学习笔记(五)RDD操作(四)_RDD连接集合操作

    的连接/集合操作 1.join-连接 对应于SQL中常见的JOIN操作 菜鸟教程网关于SQL连接总结性资料 Pyspark中的连接函数要求定义键,因为连接的过程是基于共同的字段(键)来组合两个RDD...两个RDD中各自包含的key为基准,能找到共同的Key,则返回两个RDD的值,找不到就各自返回各自的值,并以none****填充缺失的值 rdd_fullOuterJoin_test = rdd_1...2.Union-集合操作 2.1 union union(other) 官方文档:pyspark.RDD.union 转化操作union()把一个RDD追加到另一个RDD后面,两个RDD的结构并不一定要相同...(即不一定列数要相同),并且union并不会过滤重复的条目。...第二个RDD中的元素,返回第一个RDD中有,但第二个RDD中没有的元素。

    1.3K20

    Spark编程实验二:RDD编程初级实践

    repartition(1)的作用是让结果合并到一个文件中,不加的话会结果写入到两个文件 res.repartition(1).saveAsTextFile("file:///home/zhc/mycode...要求读取所有文件中的整数,进行排序后,输出到一个新的文件中,输出的内容个数为每行两个整数,第一个整数为第二个整数的排序位次,第二个整数为原待排序的整数。...使用vim编辑器编辑“/home/zhc/mycode/RDD/FileSort.py”文件: #/home/zhc/mycode/RDD/FileSort.py from pyspark import.../file4.txt" rdd1 = sc.textFile(file) # 过滤出长度不为0的行 rdd2=rdd1.filter(lambda x:(len(x.strip(...(4)在进行排序操作时,需要利用自定义类来实现二次排序等功能。 总之,通过实验可以更加深入地理解Spark的原理和机制,提高数据处理和计算的效率和准确性。

    3800

    PySpark入门级学习教程,框架思维(上)

    模式中的主控节点,负责接收来自Client的job,并管理着worker,可以给worker分配任务和资源(主要是driver和executor资源); Worker:指的是Standalone模式中的...Spark就是借用了DAG对RDD之间的关系进行了建模,用来描述RDD之间的因果依赖关系。因为在一个Spark作业调度中,多个作业任务之间也是相互依赖的,有些任务需要在一些任务执行完成了才可以执行的。...之后的flatMap结果: ['hello', 'SamShare', 'hello', 'PySpark'] # 3. filter: 过滤数据 rdd = sc.parallelize(range...(1, 11), 4) print("原始数据:", rdd.collect()) print("过滤奇数:", rdd.filter(lambda x: x % 2 == 0).collect())...10. intersection: 取两个RDD的交集,同时有去重的功效 rdd1 = sc.parallelize([1, 10, 2, 3, 4, 5, 2, 3]) rdd2 = sc.parallelize

    1.6K20

    【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    一、RDD#reduceByKey 方法 1、RDD#reduceByKey 方法概念 RDD#reduceByKey 方法 是 PySpark 中 提供的计算方法 , 首先 , 对 键值对 KV..., 指的是 二元元组 , 也就是 RDD 对象中存储的数据是 二元元组 ; 元组 可以看做为 只读列表 ; 二元元组 指的是 元组 中的数据 , 只有两个 , 如 : ("Tom", 18) ("Jerry..."Tom", 18) 和 ("Tom", 17) 元组分为一组 , 在这一组中 , 将 18 和 17 两个数据进行聚合 , 如 : 相加操作 , 最终聚合结果是 35 ; ("Jerry", 12)..., 一个方法可以被多个任务调用 , 而不会出现数据竞争或状态错误的问题 ; 以便在并行计算时能够正确地聚合值列表 ; 二、代码示例 - RDD#reduceByKey 方法 ---- 1、代码示例 在下面的代码中...RDD 中的内容 print(rdd2.collect()) # 停止 PySpark 程序 sparkContext.stop() 2、执行结果 D:\001_Develop\022_Python

    75920

    独家 | 一文读懂PySpark数据框(附实例)

    数据源 数据框支持各种各样地数据格式和数据源,这一点我们将在PySpark数据框教程的后继内容中做深入的研究。它们可以从不同类的数据源中导入数据。 4....在Spark中,惰性求值在数据转换发生时。 数据框实际上是不可变的。由于不可变,意味着它作为对象一旦被创建其状态就不能被改变。...还可以通过已有的RDD或任何其它数据库创建数据,如Hive或Cassandra。它还可以从HDFS或本地文件系统中加载数据。...这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3. 列名和个数(行和列) 当我们想看一下这个数据框对象的各列名、行数或列数时,我们用以下方法: 4....查询多列 如果我们要从数据框中查询多个指定列,我们可以用select方法。 6. 查询不重复的多列组合 7. 过滤数据 为了过滤数据,根据指定的条件,我们使用filter命令。

    6K10

    Eat pyspark 1st day | 快速搭建你的Spark开发环境

    __version__) rdd = sc.parallelize(["hello","spark"]) print(rdd.reduce(lambda x,y:x+' '+y)) spark version...二,运行pyspark的各种方式 pyspark主要通过以下一些方式运行。 1,通过pyspark进入pyspark单机交互式环境。 这种方式一般用来测试代码。...三,通过spark-submit提交任务到集群运行常见问题 以下为在集群上运行pyspark时相关的一些问题, 1,pyspark是否能够调用Scala或者Java开发的jar包?...答:只有Driver中能够调用jar包,通过Py4J进行调用,在excutors中无法调用。 2,pyspark如何在excutors中安装诸如pandas,numpy等包?...答:可以通过conda建立Python环境,然后将其压缩成zip文件上传到hdfs中,并在提交任务时指定环境。

    2.4K20

    【Spark研究】Spark编程指南(Python版)

    但是,在本地测试以及单元测试时,你仍需要自行传入”local”来运行Spark程序。...创建一个RDD有两个方法:在你的驱动程序中并行化一个已经存在的集合;从外部存储系统中引用一个数据集,这个存储系统可以是一个共享文件系统,比如HDFS、HBase或任意提供了Hadoop输入格式的数据来源...当将一个键值对RDD储存到一个序列文件中时PySpark将会运行上述过程的相反过程。首先将Python对象反串行化成Java对象,然后转化成可写类型。...时返回(K, (V, W))对RDD cogroup(otherDataset, [numTasks]) | 用于两个键值对RDD时返回 (K, (V迭代器, W迭代器))RDD cartesian(otherDataset...请确保你在finally块或测试框架的tearDown方法中终止了上下文,因为Spark不支持两个上下文在一个程序中同时运行。

    5.1K50
    领券