导语:在这篇 Keras 教程中, 你将学到如何用 Python 建立一个卷积神经网络!事实上, 我们将利用著名的 MNIST 数据集, 训练一个准确度超过 99% 的手写数字分类器....然后, 确保你的计算机上已经安装了以下软件:
Python 2.7+ (Python 3 也可以, 但总体而言, Python 2.7 在数据科学领域依旧更受欢迎.)...MaxPooling2D 是一种减少模型参数数量的方式, 其通过在前一层上滑动一个 2*2 的滤波器, 再从这个 2*2 的滤波器的 4 个值中取最大值....到目前为止, 对于模型的参数, 我们已经添加了 2 个卷积层. 要完成模型的架构, 让我们添加一个完全连接的层和输出层:
?
对于 Dense 层, 第一个参数是输出的大小....Keras 会自动处理层间连接.
注意到最后一层的输出大小为 10, 对应于 10 个数字类型.
同时还要注意, 卷积层的权重在传递给完全连接的 Dense 层之前, 必须压平 (维度为 1).