首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

70个NumPy练习:在Python下一举搞定机器学习矩阵运算

翻译 | 王柯凝 责编 | suisui 【导读】Numpy是一个开源的Python科学计算库,专用于存储和处理大型矩阵,相比Python自身的嵌套列表结构要高效很多,是数据分析、统计机器学习的必备工具...输入: 输出: 答案: 12.从一个数组中删除存在于另一个数组中的元素? 难度:2 问题:从数组a中删除在数组b中存在的所有元素。 输入: 输出: 答案: 13.获取两个数组元素匹配的索引号。...输入: 答案: 22.如何使用科学记数法(如1e10)漂亮地打印一个numpy数组?...难度:1 问题:使用科学记数法(如1e10)漂亮的打印数组rand_arr 输入: 输出: 答案: 23.如何限制numpy数组输出中打印元素的数量?...难度:1 问题:将python numpy数组a中打印的元素数量限制为最多6个。 输入: 输出: 答案: 24.如何在不截断的情况下打印完整的numpy数组?

20.7K42

再肝3天,整理了90个NumPy案例,不能不收藏!

25 的所有元素替换为 1,否则为 0 对 NumPy 数组中的所有元素求和 创建 3D NumPy 零数组 计算 NumPy 数组中每一行的总和 打印没有科学记数法的 NumPy 数组 获取numpy...数组中所有NaN值的索引列表 检查 NumPy 数组中的所有元素都是 NaN 将列表添加到 Python 中的 NumPy 数组 在 Numpy 中抑制科学记数法 将具有 12 个元素的一维数组转换为...3D NumPy 数组 计算不同长度的 Numpy 数组的平均值 从 Numpy 数组中删除 nan 值 Example 1 Example 2 向 NumPy 数组添加一列 在 Numpy Array...中打印浮点值时如何抑制科学记数法 Numpy 将 1d 数组重塑为 1 列的 2d 数组 初始化 NumPy 数组 创建重复一行 将 NumPy 数组附加到 Python 中的空数组 找到 Numpy...数组的平均值 计算每列的平均值 计算每一行的平均值 仅第一列的平均值 仅第二列的平均值 检测 NumPy 数组是否包含至少一个非数字值 在 Python 中附加 NumPy 数组 使用 numpy.any

4K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python基础数据类型

    浮点数除了与整型数据一样表示外,还增加了科学记数法表示,如1.234*10^4和12.23*10^3是相等的。对于很大的浮点数,用科学记数法表示,可以把10用e替代。...如1.234*10^4可以使用1.234e4。...) print(12.34e3) 2.2.3、字符串 字符串前面输入输出的时候也多少接触到了,在Python中,可以使用单引号'或双引号"来表示字符串。...,Python还有一种特殊的类型:空值,用None表示,可以理解为Java中的null,或者JavaScript中的undefined等。...如 # 我是注释一 print(1) # 我也是单行注释 ''' 我是多行注释,块注释 ''' print(1+2) 3、小结 以上这些只是例举了几种常见的基础类型,当然Python中的数据类型以及操作手法远不止这些

    9910

    解决ValueError: cannot convert float NaN to integer

    因为在Python中,NaN是不能转换为整数的。解决方法解决这个问题的方法通常有两种:1. 检查NaN值首先,我们需要检查数据中是否存在NaN值。...例如:pythonCopy codeimport numpy as np# 假设出现错误的变量是xprint(x)如果输出中包含NaN,那么我们需要找到产生NaN值的原因,并采取相应的处理方法。...、英语和科学成绩。...然后,使用​​mean​​函数计算了每个学生的平均成绩,并将结果保存在​​Average​​列中。...处理NaN值是数据清洗与准备的重要环节之一,常见的处理方法包括填充(用合适的值替换NaN)、删除(从数据集中删除包含NaN的行或列)等。整数整数是数学中的一种基本数据类型,用于表示不带小数部分的数字。

    2.2K00

    小课堂 | POI读取科学记数法字段不准确?问题复现、尝试和解决

    问题重现 原始数据 具体内容如下: 问题重现 读取含有科学记数法的Excel文件,重现问题。...思考 针对涉及诸如身份证号、社会信用统一代码等长字段的Excel导入,读取时需要较为小心,如遇到纯数字的场景,会采用科学记数法记录,POI读取的时候可能不准确。...在上述的测试中,貌似纯数字长度大于11位的时候会转换成科学记数法。...我们可以增加一层校验,如读取的内容是数字类型,且使用了科学记数法,可以提示一下,如“xxx包含科学记数法,请转换成文本格式再进行导入”。...一个简单的判断示例如下: //如为Numeric类型 String result = cell.getNumericCellValue() + ""; if(result.contains("E"))

    816110

    用于时间序列预测的Python环境

    这意味着你可以用同一种编程语言来完成你的研究和开发(弄清楚所要使用的模型),从而大大简化了从开发到实际操作的过渡。 Python时间序列库 SciPy是用于数学,科学和工程学的一个Python库 。...它建立在SciPy生态系统的基础之上,并支持NumPy阵列和Pandas 系列对象形式的数据。 它提供了一套统计测试和建模方法,以及专门用于时间序列分析的工具,也可以用于预测。...线性时间序列模型,如自回归(AR),移动平均(MA),自回归移动平均(ARMA)和自回归积分移动平均(ARIMA)。...例如,两种常用的方法是在您的平台上使用包管理(例如 ,RedHat 上的dnf或OS X 上的macports)或使用Python包管理工具(如pip)。...如何确认您的环境已正确安装,并准备好开始开发模型。 还为您介绍了如何在工作站上安装用于机器学习的Python环境。

    3K80

    【译】用于时间序列预测的Python环境

    这意味着你可以用同一种编程语言来完成你的研究和开发(弄清楚所要使用的模型),从而大大简化了从开发到实际操作的过渡。 Python时间序列库 SciPy是用于数学,科学和工程学的一个Python库 。...它建立在SciPy生态系统的基础之上,并支持NumPy阵列和Pandas 系列对象形式的数据。 它提供了一套统计测试和建模方法,以及专门用于时间序列分析的工具,也可以用于预测。...线性时间序列模型,如自回归(AR),移动平均(MA),自回归移动平均(ARMA)和自回归积分移动平均(ARIMA)。...例如,两种常用的方法是在您的平台上使用包管理(例如 ,RedHat 上的dnf或OS X 上的macports)或使用Python包管理工具(如pip)。...如何确认您的环境已正确安装,并准备好开始开发模型。 还为您介绍了如何在工作站上安装用于机器学习的Python环境。

    1.9K20

    解决ValueError: numpy.ufunc size changed, may indicate binary incompatibility. Exp

    这个错误通常是因为NumPy库的二进制文件与当前安装的Python环境不兼容所导致的。在这篇文章中,我将向大家介绍一种解决这个问题的方法。...未正确安装NumPy库:你可能在安装NumPy库时遇到了问题,导致没有正确安装。解决方案方法一:更新NumPy库首先,我们可以尝试更新NumPy库,确保它与当前的Python环境兼容。...在实际应用中,NumPy常常用于进行数据分析和科学计算。假设我们有一组数据,想要计算平均值和标准差。下面的示例代码展示了如何使用NumPy来计算这些统计值。...NumPy库介绍NumPy(Numerical Python)是一个强大的Python库,用于在Python中进行科学计算和数据分析任务。...你可以使用Python自带的包管理工具pip进行安装,例如:bashCopy codepip install numpy安装完成后,你可以在Python中引入NumPy库,并开始使用它提供的函数和功能:

    1.7K20

    数据科学Python基础(附示例代码和练习题目)

    该方法将删除list中value处的第一个元素。...Python中有很多现成的软件包,它们覆盖了很多方面的问题,如:“NumPy”,“matplotlib”,“seaborn”和 “scikit-learn”都是非常著名的数据科学软件包。...如果两个模块中的某个函数名称相同,那么第二个导入的模块将会覆盖第一个模块中相应的函数。 ▌NumPy Numpy是Python用于科学计算的一个基础软件包,它运行速度很快且易于使用。...基本的统计操作 分析数据首先需要熟悉数据,Numpy中有很多种方法可以做到这一点。下面是统计数据的基本方法。 np.mean() –会返回数组内元素的算术平均值(元素的总和除以元素的长度)。...Numpy中的一些基本的函数在Python的列表中也存在,如 np.sort() 和np.sum() 。但是需要注意的是,Numpy在数组中会强制执行单一类型,这会加快程序的计算速度。

    1.4K50

    如何在Python和numpy中生成随机数

    在本教程中,你将了解如何在Python中生成和使用随机数。 完成本教程后,你会学到: 可以通过使用伪随机数生成器在程序中应用随机性。 如何通过Python标准库生成随机数和使用随机性。...使用sample()函数可以完成此功能,这个函数从列表中选择随机样本而不进行替换。该函数需要的参数有列表和子集大小。请注意,这些选过的项实际上并未从原始列表中删除,只是被挑进了列表的副本。...生成随机数 在机器学习中,你也许正在使用如scikit-learn和Keras之类的库。...此函数使用单个参数来指定结果数组的大小。高斯值是从标准高斯分布中抽取的;这是一个平均值为0.0,标准差为1.0的分布。 下面的示例显示了如何生成随机高斯值数组。.../randomness-in-machine-learning/ 总结 在本教程中,你了解了如何在Python中生成和使用随机数。

    19.3K30

    python的中的numpy入门

    Python中的NumPy入门在Python中,NumPy是一个强大的数值计算库。它提供了高性能的多维数组对象和各种计算函数,是进行科学计算和数据分析的重要工具。...数组操作NumPy提供了许多函数和方法用于对数组进行操作,例如计算数组的和、平均值、最大值等。...这个例子展示了NumPy在实际应用场景中的灵活性和高效性。 希望这个示例代码可以帮助您更好地理解NumPy的使用方法和实际应用。...SciPy:SciPy是一个专注于科学计算的Python库,它提供了丰富的高级数学、科学和工程计算功能,例如插值、优化、图像处理等。虽然它也依赖于NumPy,但它提供了更多领域特定的算法和函数。...结论本文介绍了使用NumPy的基本概念和操作。NumPy提供了强大的数组功能,方便进行科学计算和数据分析。希望本文能够帮助你入门NumPy,并在日后的工作中得到实际应用。

    39620
    领券