首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

独家 | 如何在BigQueryML中使用K-均值聚类来更好地理解和描述数据(附代码)

本文教你如何在BigQueryML中使用K均值聚类对数据进行分组,进而更好地理解和描述。 目前,BigQueryML支持无监督学习-可以利用K均值算法对数据进行分组。...请注意,对于产品推荐的特定用例(向客户推荐产品或特定产品的目标客户),最好使用WALS之类的协作方法训练ML模型来实现。...数据集如下所示: 用于聚类的数据集;数据的主键是Station_name和isweekday的组合 2....根据这些特性和对伦敦的一些了解,可以给出这些聚类的描述性名称。第一组可能是“一日行”, 第二组是“卧室社区”, 第三组是“旅游区”, 第四组是“商业区”。 5....显然,我们虽然可以通过自定义数据分析来单独做出这些决策,但是,将站点进行聚类分析,提出描述性的名称,并使用这些名称来做出决策,要简单得多,也更容易解释。 利用SQL便能完成所有这些操作!

90930

如何在Python 3中安装pandas包和使用数据结构

基于numpy软件包构建,pandas包括标签,描述性索引,在处理常见数据格式和丢失数据方面特别强大。...在本教程中,我们将首先安装pandas,然后让您了解基础数据结构:Series和DataFrames。 安装 pandas 同其它Python包,我们可以使用pip安装pandas。...让我们在命令行中启动Python解释器,如下所示: python 在解释器中,将numpy和pandas包导入您的命名空间: import numpy as np import pandas as pd...Python词典提供了另一种表单来在pandas中设置Series。 DataFrames DataFrame是二维标记的数据结构,其具有可由不同数据类型组成的列。...您现在应该已经安装pandas,并且可以使用pandas中的Series和DataFrames数据结构。 想要了解更多关于安装pandas包和使用数据结构的相关教程,请前往腾讯云+社区学习更多知识。

19.5K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    原理+代码|Python基于主成分分析的客户信贷评级实战

    用几个长句都不一定能够很好的描述数据集的价值,更何况高度凝练的两个短句,短短九个指标就已经十分让人头疼了,如果表格再宽一些呢,比如有二三十个变量?...首先还是与场景1类似的问题,这些指标只是冰山一角,还没算上学生们其他领域的成绩,如果说在场景1中还可以以牺牲全面性来删除一些我们觉得关系不大的变量,比如我们猜测老板只会关注GDP与人均GDP这两个指标,...主成分分析是只能针对连续变量来进行压缩,分类变量则不行。因为分类变量之间可以说是完全独立的,并没有正负两种相关性一说,如性别男和女之间就完全是独立的。...如身高-体重的量纲1.78-59与178-60在散点图上的显示会有比较大的区别!...小结 本文通过生活实例引出为什么要进行信息的压缩与提炼,讲解了主成分分析 PCA 的原理与使用时的注意事项,并使用Python示范了完整的建模流程,给读者提供了参考和借鉴。

    1.5K41

    如何在 Python 中安全地使用多进程和多线程进行数据共享

    而对于 CPU 密集型任务,使用多进程更为合适。在并发编程中,有时多个线程或进程需要访问共享的数据,因此我们需要一些机制来确保数据的安全访问。本文将从多线程和多进程两个角度探讨如何安全地实现数据共享。...下面是一个例子,演示如何在多线程中使用锁来共享数据。...使用锁 lock 来保护 append 操作,以确保数据的安全性。4. 线程和进程的选择在 Python 中,选择使用多线程还是多进程主要取决于任务的类型。...总结共享数据的常用方式在 Python 中,使用多线程和多进程进行数据共享时,必须考虑线程安全和进程间通信的问题。...使用 multiprocessing.Manager 来共享复杂的数据结构(如列表和字典)。使用 multiprocessing.Queue 来实现进程间的生产者消费者模型。

    14010

    R绘图笔记 | 一般的散点图绘制

    2.利用ggpolt2绘图 data(trees) # 加载数据集 head(trees) # 预览数据集 ?...3.其他散点图函数 除了上面的包和函数可以绘制散点图外,还有一些包也可以绘制复杂性的散点图。比如说car包中的scatterplot()函数和lattice包的xyplot()函数。...car包中的scatterplot()函数增强了散点图的许多功能,它可以很方便地绘制散点图,并能添加拟合曲线、边界箱线图和置信椭圆,还可以按子集绘图和交互式地识别点。...重要参数: formula # 模型公式;类似y~x,如果按组绘制,则类似y~x|z,其中z为分组变量; data # 为模型公式中变量来源的数据集; subset # 指定筛选数据子集; x, y #...ellipse # 逻辑词,为TRUE,则在点周围绘制椭圆 ellipse.level # 点周围椭圆的大小,默认0.95 ellipse.type # 使用字符来指定框的类型,允许值有"convex"

    5.3K20

    Seaborn库

    主要功能和特点 面向数据集的API:Seaborn提供了面向数据集的接口,可以方便地检查多个变量之间的关系,并支持使用分类变量来显示观察结果或汇总统计数据。...分类散点图:如 swarmplot 和 stripplot。 箱线图:展示数据的分布情况。 热力图:用于展示矩阵数据的相关性。...提到了Seaborn 0.11.2版本的一些改进,包括样式支持的增强,但这与问题中询问的最新版本(1.7)不匹配。 如何在Seaborn中实现复杂的数据预处理步骤,例如数据清洗和转换?...在Seaborn中实现复杂的数据预处理步骤,包括数据清洗和转换,可以遵循以下详细流程: 使用pandas库读取数据文件(如CSV、Excel等),并将其加载到DataFrame中。...不足: 学习曲线陡峭:使用Plotly进行数据可视化时,尤其是对于初学者来说,可能会遇到一些困难,需要花费更多时间来熟悉其复杂的API。

    14710

    【R绘图】散点图+直方图(密度图)

    前面我也给大家简单介绍过 ☞R计算mRNA和lncRNA之间的相关性+散点图 ☞R语言绘图:复杂散点图绘制 相信大家在读paper的时候也见到过下面这种类型的图 这张图在传统的相关性散点图的基础上还多了一个直方图...#安装psych包 install.packages("psych") #加载psych包 library(psych) #使用psych包自带的数据集sat.act #查看前6行 head(sat.act...) 首先我们用默认参数来画图看看效果 #绘制SATV和SATQ之间的相关性散点图和直方图 with(sat.act,scatter.hist(SATV,SATQ)) 这个是默认参数画出来的图,问题还是比较多的...", #行坐标名 ylab="SATQ", #纵坐标名 title="SATQ vs SATV" #修改主标题 ) 接下来我们整点高级的,数据中还包含有性别这一列...) 今天的分享就先到这里,如果大家觉得有用,别忘了点"在看",分享给更多的小伙伴~ 参考资料: ☞R计算mRNA和lncRNA之间的相关性+散点图 ☞R语言绘图:复杂散点图绘制

    90040

    R语言分析糖尿病数据:多元线性模型、MANOVA、决策树、典型判别分析、HE图、Boxs M检验可视化

    他们使用斯坦福线性加速器中心的PRIM9系统将数据可视化为3D,并发现了一个奇特的图案,看起来像是一个有两个翼的大斑点。本文帮助客户使用这些数据来说明多元线性模型的各种图形方法。...,instest:测试中的血浆胰岛素,测量口服葡萄糖的胰岛素反应,sspg:稳态血浆葡萄糖,测量胰岛素抵抗性group:诊断组数据的椭圆和方差齐性我们首先绘制数据集中三个变量的协方差椭圆。...这在单独的散点图中更容易看到,例如以下示例。这个发现是Reaven和Miller得出化学糖尿病和明显糖尿病反映不同疾病状态而不是逐渐加重的结论的部分原因。...另外,我们注意到可以使用scatter3d``car包中的三维散点图更容易地看到组之间的差异。...scatter3d带有50%数据椭圆体的糖尿病数据的三维散点图Box's M检验Box's M检验确认协方差矩阵存在显著的异质性。

    36200

    Matplotlib 中文用户指南 8.1 屏幕截图

    ,包括平台、线框图、散点图和条形图。...椭圆 为了支持 Phoenix Mars Mission(使用 matplotlib 展示地面跟踪的航天器),Michael Droettboom 在 Charlie Moad 的工作基础上提供了非常精确的椭圆弧的...源代码 条形图 使用bar()命令创建条形图十分容易,其中包括一些定制(如误差条): 源代码 创建堆叠条(bar_stacked.py),蜡烛条(finance_demo.py)和水平条形图(barh_demo.py...源代码 散点图示例 scatter()命令使用(可选的)大小和颜色参数创建散点图。 此示例描绘了 Google 股票价格的变化,标记的尺寸反映了交易量,并且颜色随时间变化。...金融图表 您可以通过结合 matplotlib 提供的各种绘图函数,布局命令和标签工具来创建复杂的金融图表。

    4.3K30

    手把手教线性回归分析(附R语言实例)

    本文将介绍如何将回归方法应用到你自己的数据中,主要介绍学习内容: 用线性回归方法来拟合数据方程的基本统计原则和它们如何描述数据元素之间的关系。...总结起来,我们有一个数据集(观测值)和一个模型(我们猜测可以拟合数据的一个公式),我们还要去找出模型的参数(我们的最佳拟合模型中的参数a和b),这样,模型就可以“最佳”拟合数据了。...为了看看具有多个潜在的自变量的真实数据集,我们会在下一步使用具体的数据——医疗费用的数据。...第1步——收集/观察数据 为了便于分析,我们使用一个模拟数据集,该数据集包含了美国病人的医疗费用。而本文创建的这些数据使用了来自美国人口普查局(U.S....两个变量的相关性由椭圆的形状所表示,椭圆越被拉伸,其相关性越强。一个几乎类似于圆的完美的椭圆形,如bmi和children,表示一种非常弱的相关性。

    7.1K32

    seaborn的介绍

    以下是seaborn提供的一些功能: 面向数据集的API,用于检查多个变量之间的关系 专门支持使用分类变量来显示观察结果或汇总统计数据 可视化单变量或双变量分布以及在数据子集之间进行比较的选项 不同种类因变量的线性回归模型的自动估计和绘图...文档中的大多数代码都将使用该load_dataset()函数快速访问示例数据集。..._images / introduction_11_0.png 注意如何在散点图和线图上共享size和style参数,但它们会不同地影响两个可视化(更改标记区域和符号与线宽和虚线)。..._images / introduction_13_0.png 当估计统计值时,seaborn将使用自举来计算置信区间并绘制表示估计不确定性的误差条。 seaborn中的统计估计超出了描述性统计学。...我们上面使用的“fmri”数据集说明了整齐的时间序列数据集如何在不同的行中包含每个时间点: 学科 时间点 事件 区域 信号 0 S13 18 STIM 顶叶 -0.017552 1 S5 14 STIM

    4K20

    10种聚类算法及python实现

    在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。完成本教程后,你将知道: 聚类是在输入数据的特征空间中查找自然组的无监督问题。...对于所有数据集,有许多不同的聚类算法和单一的最佳方法。 在 scikit-learn 机器学习库的 Python 中如何实现、适配和使用顶级聚类算法。...聚类算法示例 在本节中,我们将回顾如何在 scikit-learn 中使用10个流行的聚类算法。这包括一个拟合模型的例子和可视化结果的例子。...使用高斯混合聚类识别出具有聚类的数据集的散点图 总结 在本教程中,您发现了如何在 python 中安装和使用顶级聚类算法。具体来说,你学到了: 聚类是在特征空间输入数据中发现自然组的无监督问题。...有许多不同的聚类算法,对于所有数据集没有单一的最佳方法。 在 scikit-learn 机器学习库的 Python 中如何实现、适合和使用顶级聚类算法。

    83430

    猫头虎 分享:Python库 Plotly 的简介、安装、用法详解入门教程

    Plotly是一个开源的、基于浏览器的图形库,支持多种编程语言如Python、R、MATLAB等。它能够生成高质量、交互式的数据可视化,并支持各种类型的图表,如线图、散点图、饼图、柱状图、地理图等。...在现代的数据分析和机器学习项目中,Plotly的使用变得越来越普遍,因为它不仅美观,而且可以轻松嵌入到网页或Jupyter Notebook中,供他人交互使用。...与其他静态图形库(如Matplotlib)不同,Plotly允许用户在浏览器中与图表进行交互,如缩放、平移、选择数据点等。这对于数据分析和结果展示有着极大的帮助。...通常这是由于在某些IDE中(如PyCharm)使用plotly时,无法自动打开浏览器窗口。...4.2 如何在Jupyter Notebook中使用Plotly?

    30910

    教你在Python中用Scikit生成测试数据集(附代码、学习资料)

    测试数据集是一个小型的人工数据集,它可以让你测试机器学习算法或其它测试工具。 测试数据集的数据具有定义明确的性质,如线性或非线性,这允许您探索特定的算法行为。...scikit-learn Python库提供了一组函数,用于从结构化的测试问题中生成样本,用于进行回归和分类。 在本教程中,您将发现测试问题以及如何在Python中使用scikit学习。...测试数据集是一个较小的人为设计问题,它允许您测试和调试算法和测试工具。 它们还能帮助更好地理解算法的行为,以及超参数是如何在相应算法的执行过程进行改变的。...测试分类问题的散点图 我们将在下面的示例中使用这个相同的示例结构。 卫星分类问题 make_moons()函数是用于二分类问题的的,它将生成像漩涡一样,或者像月亮形状一样的数据集。...扩大的问题 选择一个测试问题,并探索扩大它的规模,使用改进的方法来可视化结果,或者探索给定的算法的模型技巧和问题深度。

    2.8K70

    【视频】主成分分析PCA降维方法和R语言分析葡萄酒可视化实例|数据分享|附代码数据

    在本文中,我们将讨论如何通过使用 R编程语言使用主成分分析来减少数据维度分析葡萄酒数据高维数据集的处理可能是一个复杂的问题,因为我们需要更高的计算资源,或者难以控制机器学习模型的过度拟合等。...R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图我们将使用葡萄酒数据集进行主成分分析。数据数据包含177个样本和13个变量的数据框;vintages包含类标签。...这些数据包含在三种类型的葡萄酒中各自发现的几种成分的数量。# 看一下数据head(no)输出转换和标准化数据对数转换和标准化,将所有变量设置在同一尺度上。...本文选自《R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图》。...NBA球员聚类分析Python、R对小说进行文本挖掘和层次聚类可视化分析案例R语言复杂网络分析:聚类(社区检测)和可视化R语言中的划分聚类模型基于模型的聚类和R语言中的高斯混合模型r语言聚类分析:k-means

    32600

    【独家】手把手教线性回归分析(附R语言实例)

    本文将介绍如何将回归方法应用到你自己的数据中,主要介绍学习内容: 用线性回归方法来拟合数据方程的基本统计原则和它们如何描述数据元素之间的关系。...总结起来,我们有一个数据集(观测值)和一个模型(我们猜测可以拟合数据的一个公式),我们还要去找出模型的参数(我们的最佳拟合模型中的参数a和b),这样,模型就可以“最佳”拟合数据了。...为了看看具有多个潜在的自变量的真实数据集,我们会在下一步使用具体的数据——医疗费用的数据。...第1步——收集/观察数据 为了便于分析,我们使用一个模拟数据集,该数据集包含了美国病人的医疗费用。而本文创建的这些数据使用了来自美国人口普查局(U.S....一个几乎类似于圆的完美的椭圆形,如bmi和children,表示一种非常弱的相关性。 散点图中绘制的曲线称为局部回归平滑(loess smooth),它表示x轴和y轴变量之间的一般关系。

    14K121

    R语言绘图:复杂散点图绘制

    散点图用于描述两个连续性变量间的关系,三个变量之间的关系可以通过3D图形或气泡来展示,多个变量之间的两两关系可以通过散点图矩阵来展示。 1....reg.line # 默认值是lm,用于制定绘制回归直线的函数 ellipse # 在非对角线绘制数据密度椭圆 groups # 对数据分组 by.groups # 如果设置为TRUE,那么回归直线按照分组来拟合...(fit) 例如:使用mtcars数据集来绘制散点图: library(car) scatterplotMatrix( ~ mpg + disp + drat + wt, data = mtcars,...例如利用mtcars数据集,绘制wt,disp和mpg之间的三维散点图: install.packages("scatterplot3d") library(scatterplot3d) with(mtcars...气泡图 使用气泡图来展示三个变量之间的关系,先创建一个二维散点图,然后用点的大小来代表第三个变量的值。

    3.3K20

    【视频】主成分分析PCA降维方法和R语言分析葡萄酒可视化实例|数据分享|附代码数据

    在本文中,我们将讨论如何通过使用 R编程语言使用主成分分析来减少数据维度分析葡萄酒数据高维数据集的处理可能是一个复杂的问题,因为我们需要更高的计算资源,或者难以控制机器学习模型的过度拟合等。...R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图我们将使用葡萄酒数据集进行主成分分析。数据数据包含177个样本和13个变量的数据框;vintages包含类标签。...这些数据包含在三种类型的葡萄酒中各自发现的几种成分的数量。# 看一下数据head(no)输出转换和标准化数据对数转换和标准化,将所有变量设置在同一尺度上。...本文选自《R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图》。...NBA球员聚类分析Python、R对小说进行文本挖掘和层次聚类可视化分析案例R语言复杂网络分析:聚类(社区检测)和可视化R语言中的划分聚类模型基于模型的聚类和R语言中的高斯混合模型r语言聚类分析:k-means

    1.3K00

    10大机器学习聚类算法实现(Python)

    在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。 完成本教程后,你将知道: 聚类是在输入数据的特征空间中查找自然组的无监督问题。...对于所有数据集,有许多不同的聚类算法和单一的最佳方法。 在 Scikit-learn 机器学习库的 Python 中如何实现、适配和使用顶级聚类算法。...我已经做了一些最小的尝试来调整每个方法到数据集。 3 示例 3.1 亲和力传播 亲和力传播包括找到一组最能概括数据的范例。...图:使用高斯混合聚类识别出具有聚类的数据集的散点图 三、总结 在本教程中,您发现了如何在 Python 中安装和使用顶级聚类算法。...在 Scikit-learn 机器学习库的 Python 中如何实现、适合和使用10种顶级聚类算法

    32820

    10 种聚类算法的完整 Python 操作示例

    在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。 完成本教程后,你将知道: 聚类是在输入数据的特征空间中查找自然组的无监督问题。...对于所有数据集,有许多不同的聚类算法和单一的最佳方法。 在 scikit-learn 机器学习库的 Python 中如何实现、适配和使用顶级聚类算法。...聚类算法示例 在本节中,我们将回顾如何在 scikit-learn 中使用10个流行的聚类算法。这包括一个拟合模型的例子和可视化结果的例子。...带有最小批次K均值聚类的聚类数据集的散点图 9.均值漂移聚类 均值漂移聚类涉及到根据特征空间中的实例密度来寻找和调整质心。...使用高斯混合聚类识别出具有聚类的数据集的散点图 三. 总结 在本教程中,您发现了如何在 python 中安装和使用顶级聚类算法。

    88620
    领券