它提供了2D图形和文本功能,以及受限的图像处理功能,在传统的Windows Form 编程中,我们经常使用Graphics图形对象的DrawCurve方法绘制平滑的曲线。...WPF绘图编程与传统GDI编程有显著不同,WPF中已经提供很多更强大灵活的方法进行绘制,可以方便绘制任意的矢量图形。...由于没有提供与DrawCurve方法等价的方法,WPF中没有提供方法调用来绘制光滑曲线,我们可以通过一系列贝塞尔曲线绘制一个平滑的曲线。...从起点和终点到控制点的距离决定了曲线与蓝色线的距离。如果控制点较远,则曲线沿蓝色线较长。 要绘制一条连接一系列点的平滑曲线,可以构建多个从这些点开始和结束的贝塞尔曲线。...定义寻找控制点的方法: 参数points:是绘制平滑曲线的一组点数据。 参数tension:张力参数决定控制点与数据点的距离。
R语言ggplot2包用来画折线图的函数默认应该是带有棱角的,如果想要实现平滑的曲线好像不太容易,之前的推文介绍过 ggalt这个包 R语言的ggplot2做平滑的折线图简单小例子 R语言ggplot2...平滑的可以借助 geom_bump()函数 来自于ggbump这个R包 帮助文档 https://github.com/davidsjoberg/ggbump 这个链接还有很多漂亮的图 比如 ?...这个数据可视化的类型具体的应用场景是啥,我暂时还不知道 突然想到可以用这种方式来画平滑的折线图 最简单的平滑折线图 #install.packages("ggbump") library(ggbump
地图绘制思路: ① 绘制需要展示的地图,获取地图对象,获取每个区域的名字以及顺序; ② 在每个区域的名字和顺序后面,加上我们需要展示的数据以及经纬度; ③ 根据数据的大小,设置每个区域展示的颜色的深浅...,以区分每个区域; √ 对数据进行标准化处理,使用[0,1]值,代表颜色的透明度,以控制颜色深浅; ④ 根据颜色进行填色 ⑤ 根据经纬度进行标注地图的名字 那么如何绘制地图呢?...首先绘制地图需要的包: install.packages(“maps”) install.packages(“mapdata”) 地图函数: map(database,fill=FALSE...text(data$x, data$y, data$name, cex = 0.6) 绘制好的地图: ?...,设置为显示数值的大小 inches 缩放比例,将圆形的大小缩放到合适程度 add 是否追加到图形中,在地图上增加图形,需要设置为TRUE bg 图形的背景色 代码实现: library
那么如何绘制树图呢?...首先绘制树图需要的包: install.packages(“treemap”) 树图函数: treemap(x,index,vSize,vColor,palette,range,border.col...设置边框的颜色值 type 设置统计数据的大小的类型,一般选择value,也就是值类型 代码实现: install.packages("treemap", repos='http://cran.r-project.org
经过这么长时间对R语言的学习,相信对于R中的四种独立图形系统,你肯定也不会感到惊奇。...图2与图1最大的区别在于添加了一条“平滑”曲线,这里用到了函数geom_smooth()。对于图3,ggplot2包提供了分组和小面化(faceting)的方法。...不像其他的R包,ggplot2凭借其自身就可以被认为一种综合图形编程语言。它有自己的学习曲线,有时这个曲线比较陡,但是坚持住,这些努力都是值得的。 图2,线性拟合结果图 ? 图3,“分组”示例图 ?...函数ggplot()指定要绘制的数据源和变量,几何函数则指定这些变量如何在视觉上进行表示(使用点、条、线和阴影区)。表1列出了几种常见的几何函数(目前有37个几何函数可供使用)。 表1,几何函数 ?...我们在前面已经见过了函数geom_smooth()的例子,该函数中的参数含义依次为:method代表要使用的平滑函数,如lm、glm等;参数formula代表在函数中使用的公式,和回归分析中的参数formula
在上述散点图中添加一条平滑曲线,通过method参数可以指定曲线拟合的方法,默认为method="loess"--平滑局部回归。参数span控制曲线的平滑程度,取值越大曲线越平滑。...(2)几何对象 基本图层确定了数据源和映射后,通过加号(+)就可以不断地添加新图层.第二图层添加几何对象类的函数,在图中绘制图形元素其他类型的图形,如直方图、箱线图等。...如点、线、多边形等,还可以用来绘制. ? 上面函数内部的基本参数都是一样的。...例如用stat_smooth对数据作loess平滑,在carat-price散点图上添加非线性回归线。...R绘制好的图可以保存成多种格式,对应的生成函数名即它的扩展名。
图形展示 图形解读 ❝此图使用经典的企鹅数据集进行展示,在散点图的基础上按照分组添加拟合曲线及回归方程与R,P值,后使用ggExtra添加密度曲线与数据分布直方图,使用已有R包进行绘制非常的方便,此图大概有以下几点注意事项...❞ 1.拟合曲线的添加 ❝拟合曲线的添加在R中常用的大概有两个函数geom_smooth与ggmpisc::stat_poly_line。两者均可用于在R图形中添加平滑线或拟合线,需要选择正确的模型。...可直接在图形上添加拟合线,而不是基于数据点的平滑。 geom_smooth是一个更通用的函数,用于在 ggplot2 图形中添加平滑曲线或拟合线。...回归方程的添加 ❝stat_poly_eq:用于添加多项式回归方程和相关统计量(如 R2、p 值等)的标签。这个函数不仅仅限于线 性回归,还可以用于更高阶的多项式回归。...」购买「2023年度会员文档」同步更新中「售价149元」,内容主要包括各种「高分论文的图表分析复现以及一些个性化图表的绘制」均包含数据+代码;按照往年数据小编年产出约在150+以上 ❞
几何成分 决定哪种可视化方式更适合数据,例如,散点图、线形图、条形图、直方图、Q-Q图、平滑密度图、boxplots、配对图、热图等。 映射成分 决定用什么变量作为X变量,用什么作为Y变量。...,如KNeighbors回归(KNR)和支持向量回归(SVR)。...了解评估回归模型的各种指标,如MSE(平均平方误差)、MAE(平均绝对误差)和R2得分 能够比较不同的回归模型 2....能够使用scikit-learn来建立模型 2.2 模型评估和超参数调整 能够在管道中组合变压器和估计器 能够使用k-折交叉验证(k-fold cross-validation)来评估模型性能 了解如何使用学习和验证曲线调试分类算法...能够通过学习曲线诊断偏差和方差问题 能够通过验证曲线解决过拟合和欠拟合问题 了解如何通过网格搜索微调机器学习模型 了解如何通过网格搜索调整超参数 能够阅读和解释混淆矩阵 能够绘制和解释接收器工作特性(
p=14854 一种类型的平滑称为样条平滑。柔性金属(通常是铅),可以用作绘制平滑曲线的参考。将选择一组点(称为结),然后将样条线压在特定的x,y点,然后弯曲以通过下一个点,依此类推。...由于金属的柔韧性,此过程将生成通过这些点的平滑曲线。 在数学上,可以通过选择结点并使用(通常是三次)回归来估计结之间的点,并使用演算来确保每条单独的回归线连接在一起时曲线都平滑,从而重现该过程。...在R中,可通过 supsmu 函数获得 超级平滑器。 为了说明这一点,考虑汽车数据。以下几行产生了 重量 与 MPG的关系图,并叠加了一条超平滑线。...该图显示如下: 带有面板的平滑算法 在使用点阵图形时,我们已经看到了 panel.lmline 的使用 ,它在点阵图的每个面板中显示最佳回归线。...可以使用类似的函数 panel.loess 在图的每个面板中叠加局部加权回归平滑器。作为简单说明,考虑内置的 Orange 数据集,其中包含有关几棵橙树的年龄和周长的信息。
p=15508 ---- 绘制ROC曲线通过Logistic回归进行分类 加载样本数据。...mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit'); 计算ROC曲线。使用逻辑回归模型中的概率估计值作为得分。...绘制ROC曲线。...2.面板平滑转移回归(PSTR)分析案例实现 3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR) 4.R语言泊松Poisson回归模型分析案例 5.R语言回归中的Hosmer-Lemeshow...拟合优度检验 6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现 7.在R语言中实现Logistic逻辑回归 8.python用线性回归预测股票价格 9.R语言如何在生存分析与
r 区域渲染 ctrl + b 渲染设置 菜单: 查看 - 恢复默认场景 其他: shift + v 设置显示参数,如打开透显 n 打开快捷显示菜单,如显示分段线条 o 最大化显示 2....:代表启用 标签:如平滑着色等,可以随意拖动 支持快速拖动操作 3....样条(曲线) 样条需要配合生成器(绿色)生成模型 顶部图标工具条: 绘制贝塞尔曲线 cmd 添加点 shift 贝塞尔调整棒分开调整,可以调成尖角 其他: 平滑/细分:即快速增加点,在点选择状态下,空白处右键...,如酒杯酒瓶 放样:通过截面样条生成几何体,使用多样条做一些奇怪的东西,如扭曲的特殊形状,如特殊口径的花瓶 扫描:截面样条+路径样条(注意顺序),如马灯的提手,如麻绳,截面为3个圆 矢量化:图片转矢量...C4D 中,如平滑细分图标为黑色线,而挤压为白色线,黑色线表示处理集合体,白色线表示处理样条 5.
6广义相加模型(GAM) 广义加性模型(GAM)(Hastie,1984)使用光滑函数(如样条曲线)作为回归模型中的预测因子。...调整后的R平方(越高越好)。我们可以看到R-sq.(adj)值有点低。 让我们绘制拟合值: 我们需要将两个自变量的交互作用包括到模型中。 第一种交互类型对两个变量都使用了一个平滑函数。...GAM、样条回归 R语言广义加性模型GAMs分析温度、臭氧环境数据绘制偏回归图与偏残差图 R语言广义相加(加性)模型(GAMs)与光滑函数可视化 R语言里的非线性模型:多项式回归、局部样条、平滑样条、...广义相加模型GAM分析 R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分类 R语言ISLR工资数据进行多项式回归和样条回归分析 R语言中的多项式回归、局部回归、核平滑和平滑样条回归模型...R语言用泊松Poisson回归、GAM样条曲线模型预测骑自行车者的数量 R语言分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测 R语言中的多项式回归、B样条曲线(B-spline
回归样条 比多项式和阶跃函数更灵活,并且实际上是两者的扩展。 局部样条曲线 类似于回归样条曲线,但是允许区域重叠,并且可以平滑地重叠。...平滑样条曲线 也类似于回归样条曲线,但是它们最小化平滑度惩罚的残差平方和准则 。 广义加性模型 允许扩展上述方法以处理多个预测变量。 多项式回归 这是扩展线性模型的最传统方法。...与多项式回归相比,样条曲线可以显示出更稳定的效果。 平滑样条线 我们讨论了回归样条曲线,该样条曲线是通过指定一组结,生成一系列基函数,然后使用最小二乘法估计样条系数而创建的。...选择平滑参数Lambda 同样,我们求助于交叉验证。事实证明,我们实际上可以非常有效地计算LOOCV,以平滑样条曲线,回归样条曲线和其他任意基函数。...由于这只是具有多个基本函数的线性回归模型,因此我们仅使用 lm() 函数。 为了拟合更复杂的样条曲线 ,我们需要使用平滑样条曲线。 绘制这两个模型 year 是线性的。
那么今天我们就为大家介绍一下目前在R语言中流行的绘图包ggplot2。 1. ggplot2的安装:install.packages("ggplot2")。...3. ggplot2的函数介绍: ggplot2里的所有函数可以分为以下几类: 用于运算(我们在此不讲,如fortify_,mean_等) 初始化、展示绘图等命令(ggplot,plot,print等)...绘制密度图 stat_density2d 绘制二维密度图 stat_function 添加函数曲线 stat_hline 添加水平线 stat_identity 绘制原始数据,不进行统计变换 stat_qq...绘制Q-Q图 stat_quantile 连续的分位线 stat_smooth 添加平滑曲线 stat_spoke 绘制有方向的数据点(由x和y指定位置,angle指定角度) stat_sum 绘制不重复的取值之和...,它是ggplot中重要的图层控制对象,因为它负责图形渲染的类型。
car包中的scatterplot()函数增强了散点图的许多功能,它可以很方便地绘制散点图,并 能添加拟合曲线、边界箱线图和置信椭圆,还可以按子集绘图和交互式地识别点。...car包中的scatterplotMatrix()函数也可以生成散点图矩阵,并有以下可选操作: 以某个因子为条件绘制散点图矩阵; 包含线性和平滑拟合曲线; 在主对角线放置箱线图、密度图或者直方图; 在各单元格的边界添加轴须图...主对角线的核密度曲线改成了直方图,并且直方图是以各车的气缸数为条件绘制的。图形包含主对角线中的直方图以及其他部分的线性和平滑拟合曲线。...另外,子群(根据气缸数)通过符号类型和颜色来区分标注默认地,回归直线拟合整个样本,包含选项by.groups = TRUE将可依据各子集分别生成拟 合曲线。...scatter3d()函数可包含各种回归曲面,比如线性、二次、平滑和附加等类型。图形默认添 加线性平面。另外,函数中还有可用于交互式识别点的选项。
ggplot2 R的作图工具包,可以使用非常简单的语句实现非常复杂漂亮的效果。...绘制不同类型的图表:geom参数 qplot(x,y,data=data,geom="")中的geom=""用来控制输出的图形类型 I....两变量图 (1) geom="points",默认参数,绘制散点图(x,y) (2) geom="smooth" 绘制平滑曲线(基于loess, gam, lm...ggplot 基本绘图类型: 这些几何元素是ggplot的基础。他们彼此结合可以构成复杂的图像。他们中的绝大多数对应特定的绘图类型。...几何对象(Geometric):几何对象代表我们图中看到的图形元素,如点、线、多边形等。 ? 统计变换(Statistics):对原始数据进行某种计算,例如二元散点上加上一条回归线。 ?
,要求的属性会有些不同,这些属性也可以在几何对象映射时提供,以下语法与上面的aes中是一样的。...三 几何对象(Geometric) 几何对象代表我们在图中实际看到的图形元素,如点、线、多边形等。...#添加默认曲线 #method 表示指定平滑曲线的统计函数,如lm线性回归, glm广义线性回归, loess多项式回归, gam广义相加模型(mgcv包), rlm稳健回归(MASS包) ggplot...#formula 表示指定平滑曲线的方程,如 y~x, y~poly(x, 2), y~log(2) ,需要与method参数搭配使用 ggplot(mpg, aes(displ, hwy)) +geom_point...#se 表示是否显示平滑曲线的置信区间,默认TRUE显示;level = 0.95 ggplot(mpg, aes(displ, hwy, color = class)) + geom_point(
点击标题查阅往期内容 【视频】广义相加模型(GAM)在电力负荷预测中的应用 分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测 实现广义相加模型GAM和普通最小二乘(OLS)回归...R语言非参数模型厘定保险费率:局部回归、广义相加模型GAM、样条回归 R语言广义加性模型GAMs分析温度、臭氧环境数据绘制偏回归图与偏残差图 R语言广义相加(加性)模型(GAMs)与光滑函数可视化 R语言里的非线性模型...:多项式回归、局部样条、平滑样条、 广义相加模型GAM分析 R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分类 R语言ISLR工资数据进行多项式回归和样条回归分析...R语言中的多项式回归、局部回归、核平滑和平滑样条回归模型 R语言用泊松Poisson回归、GAM样条曲线模型预测骑自行车者的数量 R语言分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测...R语言中的多项式回归、B样条曲线(B-spline Curves)回归 R语言广义相加模型 (GAMs)分析预测CO2时间序列数据 R语言中实现广义相加模型GAM和普通最小二乘(OLS)回归 在r语言中使用
不同类型拟合曲线的绘制 3.1 loess数据平滑曲线 局部加权回归(Locally Weighted Scatterplot Smoothing,LOESS)主要思想是取一定比例的局部数据,在这部分子集中拟合多项式回归曲线...ggplot2绘制时,使用geom_point绘制散点图,geom_smooth加入拟合曲线,method选择为loess,se=TRUE表示加入置信带,span控制loess平滑的平滑量,较小的数字产生波动线...3.2 样条数据平滑曲线 这里使用了splines包中的样条函数,df=5,样条具有五个基函数,其他参数变化不大。...具体非线性模型相关资料可参考:R语言里的非线性模型:多项式回归、局部样条、平滑样条、广义加性模型分析[2] ggplot(data = mydata, aes(x,y)) + geom_point(fill...4.2 非线性拟合 非线性拟合绘制残差图与线性拟合类似,唯一不同的点在:利用lm函数拟合不同的回归模型,以下使用了公式: ,后面的绘制与上面相同。
领取专属 10元无门槛券
手把手带您无忧上云