首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何在TensorFlow 2.0中构建强化学习智能体

    在这一教程中,我们将会使用 TensorFlow 2.0 新特性,并借助深度强化学习中的 A2C 智能体解决经典 CartPole-v0 环境任务。...TensorFlow 2.0 版的宗旨是让开发者们能够更轻松,在深度强化学习上这一理念显然也得到了发扬:在这个例子中,我们的智能体源代码不到 150 行!...,所以我们最好将其安装在单独的(虚拟)环境中。...,这种算法学习如何在一些具体的步骤中达到一个目标或者最大化;例如,最大化一个游戏中通过一些行动而获得的得分。...结论 希望本文可以让你了解深度强化学习及其在 TensorFlow 2.0 中的实现方式。请注意,在文中使用的仍然是「每晚预览版本」,它甚至还不是正式版的候选版本。

    1.3K20

    教程 | 如何在Tensorflow.js中处理MNIST图像数据

    选自freeCodeCamp 作者:Kevin Scott 机器之心编译 参与:李诗萌、路 数据清理是数据科学和机器学习中的重要组成部分,本文介绍了如何在 Tensorflow.js(0.11.1)中处理...本文将采用 Tensorflow.js(0.11.1)的 MNIST 样例(https://github.com/tensorflow/tfjs-examples/blob/master/mnist/data.js...Image 对象是表示内存中图像的本地 DOM 函数,在图像加载时提供可访问图像属性的回调。...这里有一种编写上述代码的替代方法(这种方法需要 fetch,可以用 isomorphic-fetch 等方法在 Node 中进行多边填充): const imgRequest = fetch(MNISTIMAGESSPRITE_PATH...TensorFlow.js 团队一直在改进 TensorFlow.js 的底层数据 API,这有助于更多地满足需求。

    2.5K30

    【DB笔试面试511】如何在Oracle中写操作系统文件,如写日志?

    题目部分 如何在Oracle中写操作系统文件,如写日志? 答案部分 可以利用UTL_FILE包,但是,在此之前,要注意设置好UTL_FILE_DIR初始化参数。...在CLIENT_INFO列中存放程序的客户端信息;MODULE列存放主程序名,如包的名称;ACTION列存放程序包中的过程名。该包不仅提供了设置这些列值的过程,还提供了返回这些列值的过程。...:从V$SESSION中读取客户端的信息l lDBMS_APPLICATION_INFO.READ_MODULE:从V$SESSION中读取主程序的名称 如何填充V$SESSION的CLIENT_INFO...如何在存储过程中暂停指定时间? DBMS_LOCK包的SLEEP过程。例如:“DBMS_LOCK.SLEEP(5);”表示暂停5秒。 DBMS_OUTPUT提示缓冲区不够,怎么增加?...如何在Oracle中写操作系统文件,如写日志? 可以利用UTL_FILE包,但是,在此之前,要注意设置好UTL_FILE_DIR初始化参数。

    28.8K30

    如何在时间序列预测中检测随机游走和白噪声

    还有“严格”的白噪声分布——它们的序列相关性严格为 0。这与棕色/粉红色噪声或其他自然随机现象不同,其中存在弱序列相关但仍保持无记忆。 白噪声在预测和模型诊断中的重要性 ?...这两个图表明,即使使用默认参数,随机森林也可以从训练数据中捕获几乎所有重要信号。 随机游走 时间序列预测中更具挑战性但同样不可预测的分布是随机游走。...如您所见,前 40 个滞后产生统计上显着的相关性。 那么,当可视化不是一种选择时,我们如何检测随机游走? 由于它们的创建方式,时间序列的差分应该隔离每个步骤的随机添加。...通过将序列滞后 1 并从原始值中减去它来获取一阶差分。...现在,让我们看看如何在 Python 中模拟这一点。

    1.9K20

    如何在Python中规范化和标准化时间序列数据

    如何使用Python中的scikit-learn来标准化和标准化你的时间序列数据。 让我们开始吧。...在文本编辑器中打开文件并删除“?”字符。也删除该文件中的任何页脚信息。 规范时间序列数据 规范化是对原始范围的数据进行重新调整,以使所有值都在0和1的范围内。...标准化可能是tve 有用的,甚至在一些机器学习算法中,当你的时间序列数据具有不同尺度的输入值时,也是必需的。...您可以从您的可用数据中估计这些值。如果您的时间序列呈现上升趋势或下降趋势,那么估计这些预期值可能会很困难,并且标准化法可能不是用于解决问题的最佳方法。...如何使用Python中的scikit-learn来规范化和标准化时间序列数据。 你有任何关于时间序列数据缩放或关于这个职位的问题吗? 在评论中提出您的问题,我会尽力来回答。

    6.5K90

    教程 | TensorFlow 官方解读:如何在多系统和网络拓扑中构建高性能模型

    我们在脚本中采用的另一种方法是通过 Tensorflow 中的本机并行构建输入管道。我们的方法主要由如下 3 个阶段组成: I/O 读取:从磁盘中选择和读取图像文件。...Tensorflow 可以使一个设备的张量直接用在任何其他设备上。为使张量在任何设备中可用,Tensorflow 插入了隐式副本。在张量被实际使用之前,会在设备之间调度副本运行。...使用融合的批处理归一化 Tensorflow 中默认的批处理归一化被实现为复合操作,这是很通用的做法,但是其性能不好。融合的批处理归一化是一种替代选择,其在 GPU 中能取得更好的性能。...在基准脚本中,展示了通过使用灵活和通用的 Tensorflow 原语,我们可以构建各种各样的高性能分布和聚合方案。...参数服务器变量 在 Tensorflow 模型中管理变量的最常见方式是参数服务器模式。 在分布式系统中,每个工作器(worker)进程运行相同的模型,参数服务器处理其自有的变量主副本。

    1.7K110

    入门 | TensorFlow的动态图工具Eager怎么用?这是一篇极简教程

    Eager 的出现使得开发变得更为直观,从而让 TensorFlow 的入门难度大为降低。本文介绍了使用 TensorFlow Eager 构建神经网络的简单教程。...构建一个简单的神经网络——下图将教你如何在一个合成生成的数据集上用 TensorFlow Eager 模式构建和训练一个单隐藏层神经网络。 ? 02....将文本数据传输到 TFRecords——下图将教你如何把可变序列长度的文本数据存储到 TFRecords 中。当使用迭代器读取数据集时,数据可以在批处理中快速填充。 ? 05....如何批量读取 TFRecords 数据——下图将教你如何从 TFRecords 中批量读取可变序列长度数据或图像数据。 ? 卷积神经网络(CNN) 07....构建一个序列分类的动态 RNN——学习如何使用可变序列输入数据。

    72400

    入门 | TensorFlow的动态图工具Eager怎么用?这是一篇极简教程

    Eager 的出现使得开发变得更为直观,从而让 TensorFlow 的入门难度大为降低。本文介绍了使用 TensorFlow Eager 构建神经网络的简单教程。...构建一个简单的神经网络——下图将教你如何在一个合成生成的数据集上用 TensorFlow Eager 模式构建和训练一个单隐藏层神经网络。 ? 02....将文本数据传输到 TFRecords——下图将教你如何把可变序列长度的文本数据存储到 TFRecords 中。当使用迭代器读取数据集时,数据可以在批处理中快速填充。 ? 05....如何批量读取 TFRecords 数据——下图将教你如何从 TFRecords 中批量读取可变序列长度数据或图像数据。 ? 卷积神经网络(CNN) 07....构建一个序列分类的动态 RNN——学习如何使用可变序列输入数据。

    76350

    基于深度学习的自然语言处理(Deep Learning-based Natural Language Processing)

    深度学习在自然语言处理中的应用深度学习算法在自然语言处理中广泛应用于各种任务,包括但不限于:文本分类文本分类是将文本分为不同类别的任务,如情感分析、垃圾邮件过滤等。...深度学习模型,如序列到序列模型(Sequence-to-Sequence Model),已经成为机器翻译中的主流方法。...该模型可以将输入序列映射到输出序列,有效地解决了传统翻译方法中的一些问题,如长距离依赖性。问答系统问答系统旨在回答用户提出的问题。...以下是一个基于深度学习的自然语言处理示例代码,使用了Python中的TensorFlow库和Keras库:pythonCopy codeimport tensorflow as tffrom tensorflow...深度学习在自然语言处理中的挑战尽管深度学习在自然语言处理中取得了显著的成果,但仍然存在一些挑战:数据稀缺性深度学习模型通常需要大量的标注数据进行训练,然而在某些领域,如医疗和法律,获得大规模的标注数据是困难的

    80730

    AI 技术讲座精选:如何在时间序列预测中使用LSTM网络中的时间步长

    Keras中的长短期记忆(LSTM)网络支持时间步长。 这就引出这样一个问题:单变量时间序列的滞后观察是否可以用作LSTM的时间步长,这样做是否能改进预测性能。...在本教程中,我们将研究Python 中滞后观察作为LSTM模型时间步长的用法。 在学完此教程后,你将懂得: 如何开发出测试工具,系统地评测时间序列预测问题中的LSTM时间步长。...本教程假设您已使用TensorFlow或 Theano后端安装Keras(2.0或更高版本)。 本教程还假设您已安装scikit-learn、Pandas、 NumPy 和Matplotlib。...运行该示例,以Pandas序列的形式加载数据集,并打印出头5行。 ? 然后就可生成显示明显增长趋势的序列线图。 ? 洗发水销量数据集线图 接下来,我们来看看本试验中使用的LSTM配置和测试工具。...转化序列数据使其呈静态。具体来说,就是使用 lag=1差分移除数据中的增长趋势。 将时间序列问题转化为监督学习问题。

    3.3K50

    tensorflow_cookbook--preface

    第3章,线性回归,重点是使用TensorFlow来探索各种线性回归技术,如戴明,套索,脊,弹性网和逻辑回归。 我们演示如何在TensorFlow计算图中实现每个。        ...第6章,神经网络涵盖了如何在TensorFlow中实现神经网络,从操作门和激活功能概念开始。然后我们显示一个浅层神经网络,并展示如何建立各种不同类型的图层。...我们通过解释和展示TensorFlow中的stylenet /神经风格和深层梦想算法来结束本章。         第9章,循环神经网络解释了如何在TensorFlow中实现复发神经网络(RNN)。...我们还训练一个序列到德文 - 英文翻译的序列模型。通过显示暹罗RNN网络在地址上进行记录匹配的用法,我们不用说这一章。        ...第10章,采用TensorFlow进行生产,提供了将TensorFlow移植到生产环境以及如何利用多台处理设备(如GPU)和设置分布在多台机器上的TensorFlow的提示和示例。

    2.4K100

    转载|使用PaddleFluid和TensorFlow训练RNN语言模型

    这一篇中我们会看到 PaddleFluid 和 TensorFlow 在处理序列输入时有着较大的差异:PaddleFluid 默认支持非填充的 RNN 单元,在如何组织 mini-batch 数据提供序列输入上也简化很多...需要注意的是,TensorFlow 模型中网络输入数据需要进行填充,保证一个 mini-batch 中序列长度 相等。...通常做法 是对不等长序列进行填充,在这一篇示例中我们使用一种简化的做法,每条训练样本都按照 max_sequence_length 来切割,保证一个 mini-batch 中的序列是等长的。...RNN 单元(RNN/LSTM/GRU)都支持非填充序列作为输入,框架会自动完成不等长序列的并行处理。...接下来的篇章将会继续深入 PaddleFluid 和 TensorFlow 平台的序列模型处理机制,以及更多重要功能如何在两个平台之间实现。 参考文献 [1].

    71730

    推荐系统中模型训练及使用流程的标准化

    首先旧的流程中,我们都需要声明一个变量来临时存储在线所需要的特征,编写特征填充代码,同时还需要编写特征变换代码、特征序列化代码、特征反序列化代码以及特征监控代码。...我们新的流程中,只有在 CSV 中定义变量处理方式和编写特征填充代码两个部分: 如上图右下角有4个特征,假设用户 ID,用户性别以及 itemID 是已有的特征。...然而,旧的流程中,针对每个特征的序列化,都需要手写代码,反序列化亦然,这就大大增加了算法工程师的工作量,且容易引人 bug。...我们的做法是把特征的类型进行了标准化,抽象出4种标准的类型 ( 整形、稀疏整形、字符串、稀疏字符串 ),它们都继承自基类 Feature,这个类会包含特征处理的方方面面,如生成特征、序列化、反序列化。...在重排序确定要展示给用户哪些物品之后,重复一遍特征填充的过程,然后再把可能产生曝光的物品特征序列化到特征日志中。 在离线过程中,将特征日志通过反序列化的方法,重新填充整个特征类。

    2K20

    边缘计算笔记(二): 从tensorflow生成tensorRT引擎的方法

    您将了解到: 1.TensorFlow性能如何与使用流行模型(如Inception和MobileNet)的TensorRT进行比较 2在Jetson上运行TensorFlow和TensorRT的系统设置...接下来,我们将讨论如何在jetson上使用tensorRT优化和执行tensorflow模型。我们将假设您正在使用github存储库中提供的包装脚本。...但在深入了解Forzen grah的细节以及如何创建它之前,我们将首先讨论如何在Tensorflow中序列化gragh。 ?...具体则是TensorFlow中集成的GraphDef这个Python类来完成序列化和反序列化(Parse)功能的。...具体的某个GraphDef所定义的网络中的变量的值,是保存在运行中的TensorFlow任务的内存中的,或者保存在磁盘上的checkpoint文件里。

    4.1K40

    在画图软件中,可以画出不同大小或颜色的圆形、矩形等几何图形。几何图形之间有许多共同的特征,如它们可以是用某种颜色画出来的,可以是填充的或者不填充的。

    (1)使用继承机制,分别设计实现抽象类 图形类,子类类圆形类、正方形类、长方形类,要求: ①抽象类图形类中有属性包括画笔颜色(String类型)、图形是否填充(boolean类型:true表示填充,false...表示不填充), 有方法获取图形面积、获取图形周长等; ②使用构造方法为其属性赋初值; ③在每个子类中都重写toString()方法,返回所有属性的信息; ④根据文字描述合理设计子类的其他属性和方法...(2)设计实现画板类,要求: ①画一个红色、无填充、长和宽分别为10.0与5.0的长方形; ②画一个绿色、有填充、半径为3.0的圆形; ③画一个黄色、无填充、边长为4.0的正方形; ④分别求三个对象的面积和周长...return side*side; } public String toString() { return "正方形的颜色为:"+getColour()+"\t有无填充...width; } @Override public String toString() { return "长方形的颜色为:"+getColour()+"\t有无填充

    1.8K30

    python代码实战 | 用 TensorFlow 实现序列标注:基于bi-LSTM+CRF和字符嵌入实现NER和POS

    使用Theano有时很痛苦,但却强迫我注意方程中隐藏的微小细节,并全面了解深度学习库的工作原理。 快进几个月:我在斯坦福,我正在使用 Tensorflow。...有一天,我在这里,问自己:“如果你试图在Tensorflow中编写其中一个序列标记模型怎么办?需要多长时间?“答案是:不超过几个小时。...这篇文章的目标是提供一个如何使用 Tensorflow 构建一个最先进的模型(类似于本文)进行序列标记,并分享一些令人兴奋的NLP知识的例子!...我们来看看Tensorflow代码。 回想一下,当 Tensorflow 接收批量的单词和数据时,我们需要填充句子以使它们具有相同的长度。...这取决于我们如何执行填充,但在这篇文章中我们选择动态地进行填充,即填充批次中的最大长度。 因此,句子长度和字长将取决于批次。 现在,我们可以从字符构建词嵌入。

    3.6K30

    Transformers 4.37 中文文档(一)

    将padding参数设置为True,以将批次中较短的序列填充到与最长序列相匹配的长度: >>> batch_sentences = [ ......在填充文本数据时,会为较短的序列添加0。相同的思想也适用于音频数据。特征提取器会向array中添加一个0 - 被解释为静音。...这些方法将模型的原始输出转换为有意义的预测,如边界框或分割地图。 填充 在某些情况下,例如在微调 DETR 时,模型会在训练时应用尺度增强。这可能导致批处理中的图像大小不同。...现在您知道,您需要一个分词器来处理文本,并包含填充和截断策略以处理任何可变序列长度。...Transformers Notebooks 包含了关于如何在 PyTorch 和 TensorFlow 中为特定任务微调模型的各种笔记本。

    1.1K10
    领券