首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在x轴上移动以避免与异质信息重叠?R中的森林地块

在R中,要在x轴上移动以避免与异质信息重叠,可以使用一些技术和方法。以下是一种可能的解决方案:

  1. 调整x轴刻度:可以通过调整x轴刻度的间隔来避免重叠。可以使用R中的函数,如scale_x_continuous()scale_x_discrete()来设置刻度的间隔和标签。
  2. 使用颜色编码:可以使用不同的颜色来区分异质信息,而不是在x轴上移动。这样可以保持信息的可视化,并避免重叠。可以使用R中的函数,如scale_color_manual()来设置颜色编码。
  3. 使用图形元素的大小:可以通过调整图形元素的大小来区分异质信息。可以使用R中的函数,如geom_point()geom_bar()来设置图形元素的大小。
  4. 使用分面绘图:如果数据集中的异质信息较多,可以考虑使用分面绘图来将数据分成多个小图,并在每个小图中显示不同的异质信息。可以使用R中的函数,如facet_wrap()facet_grid()来创建分面绘图。
  5. 使用交互式可视化工具:如果需要更灵活地控制和调整可视化效果,可以考虑使用交互式可视化工具,如R中的plotly包或ggplotly()函数。这些工具可以让用户通过交互方式调整图形元素的位置和大小,以避免重叠。

总结起来,要在R中在x轴上移动以避免与异质信息重叠,可以通过调整刻度、使用颜色编码、调整图形元素的大小、使用分面绘图或使用交互式可视化工具等方法来实现。具体的实现方式可以根据具体的数据和需求进行选择和调整。

关于森林地块的概念、分类、优势、应用场景以及腾讯云相关产品和产品介绍链接地址,由于没有提及具体的森林地块相关信息,无法给出具体的答案。如果有具体的问题或需求,请提供更多详细信息,以便给出更准确和全面的答案。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

好文速递:森林退化造成的碳损失超过了巴西亚马逊地区森林砍伐造成的碳损失

摘要:地上生物量(AGB)和森林面积的时空动态会影响巴西亚马逊河的碳循环,气候和生物多样性。在这里,我们通过分析基于卫星的年度AGB和森林面积数据集来调查AGB和森林面积的年际变化。我们发现,2019年的森林总面积损失比2015年更大,这可能是由于最近放松森林保护政策所致。但是,2019年的AGB净亏损比2015年减少了三倍。在2010–2019年期间,巴西亚马逊的累计总亏损为4.45 Pg C,而总收益为3.78 Pg C,导致AGB净亏损为0.67 Pg C.森林退化(73%)对总AGB损失的贡献是森林砍伐(27%)的三倍,因为面积退化的程度超过了森林砍伐的程度。这表明森林退化已成为驱动碳损失的最大过程,应成为更高的政策重点。

04
  • Google Earth Engine ——全球森林/非森林地图(FNF)数据集

    The global forest/non-forest map (FNF) is generated by classifying the SAR image (backscattering coefficient) in the global 25m resolution PALSAR-2/PALSAR SAR mosaic so that strong and low backscatter pixels are assigned as "forest" and "non-forest", respectively. Here, "forest" is defined as the natural forest with the area larger than 0.5 ha and forest cover over 10%. This definition is the same as the Food and Agriculture Organization (FAO) definition. Since the radar backscatter from the forest depends on the region (climate zone), the classification of Forest/Non-Forest is conducted by using a region-dependent threshold of backscatter. The classification accuracy is checked by using in-situ photos and high-resolution optical satellite images. Detailed information is available in the provider's Dataset Description.

    01

    Google Earth Engine(GEE)——全球红树林分布、地上生物量和树冠高度

    全球红树林分布、地上生物量和树冠高 该数据集基于遥感和现场测量数据,描述了红树林湿地的全球分布、生物量和树冠高度。利用遥感冠层高度测量和特定区域的异速模型,得出2000年名义年的(1)红树林地上生物量(AGB)、(2)最大冠层高度(最高的树的高度)和(3)基底面积加权高度(单个树的高度按其基底面积的比例加权)的估计值。此外,还提供了(4)全球赤道地区红树林生态类型中各种森林结构(如灌丛、边缘、河流和盆地)的选定地点的现场测量数据。在指定的地块内,选定的树木被确定为物种和胸高直径(DBH),树木的高度用激光测距仪或 clinometer测量。可以估计每个地块的树木密度(茎的数量),并表示为每单位面积。这些数据被用来推导出AGB、基底面积加权高度(Hba)和最大树冠高度(Hmax)之间的小区级异质性,并验证遥感估计值。

    01

    NASA数据集——1983 ——2016 年期间北美森林地点的野外地块特征数据、衍生的地上和地下燃烧碳以及获取的火灾气象指数(FWI)

    该数据集综合了 1983 年至 2016 年期间美国阿拉斯加、西北地区和加拿大萨斯喀彻温省被烧毁的北方森林地点的野外地块特征数据、衍生的地上和地下燃烧碳以及获取的火灾气象指数(FWI)系统组件。此外还包括未烧毁地块的数据。编译的地块级特征数据包括林分年龄、干扰历史、树木密度和树木生物物理测量值,用于计算地上(ag)和地下(bg)生物量/碳库、火灾前和火灾后残余土壤有机层(SOL)深度以及树木结构等级的燃烧估计值。此外,还提供了每个地点的测量坡度和坡向,以及根据地形分配的湿度等级。数据来自 1019 个燃烧过的地点和 152 个未燃烧过的地点。通过对燃烧的农业碳库和生物质碳库以及 SOL 损失的估算,计算出每个地块燃烧的总碳量、燃烧前碳量的比例以及燃烧后碳量占总碳量的比例。根据全球火灾气象数据库中的地块位置、燃烧年份和动态启动日期(燃烧日,DOB),从现有数据源获取每个地块的 FWI 系统组件,包括湿度和干旱代码以及火灾危险指数。土壤特性数据包含在一个单独的文件中。 野外研究横跨北美西部北方森林的六个生态区,捕捉了火灾前树木生产力、林龄和生态系统碳储存条件的广泛梯度。它还包括以 DOB 和 FWI 系统指数为代表的气象控制,以及火灾后残余土壤有机层深度的测量和燃烧深度的重建,以及上部和下部碳燃烧的重建。

    00

    基于多源数据融合方法的中国1公里土地覆盖图(2000)

    基于多源数据融合方法的中国1公里土地覆盖图(2000)在评价已经有土地覆盖数据的基础上,将2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植被型分类、中国1:10万冰川图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)进行融合,基于最大信任度原则进行决策,产生了新的IGBP分类系统的2000年1KM中国土地覆盖数据。前言 – 人工智能教程 新的土地覆盖数据在保持了中国土地利用数据的总体精度的同时,补充了中国植被图中对植被类型及植被季相的信息,更新了中国湿地图,增加了中国冰川图最新信息,使分类系统更加通用。新的土地覆盖数据在保持了中国土地利用数据的总体精度的同时,补充了中国植被图中对植被类型及植被季相的信息,更新了中国湿地图,增加了中国冰川图最新信息,使分类系统更加通用。

    01

    一个有效的图表图像数据提取框架

    在本文中,作者通过采用最先进的计算机视觉技术,在数据挖掘系统的数据提取阶段,填补了研究的空白。如图1所示,该阶段包含两个子任务,即绘制元素检测和数据转换。为了建立一个鲁棒的Box detector,作者综合比较了不同的基于深度学习的方法,并找到了一种合适的高精度的边框检测方法。为了建立鲁棒point detector,采用了带有特征融合模块的全卷积网络,与传统方法相比,可以区分近点。该系统可以有效地处理各种图表数据,而不需要做出启发式的假设。在数据转换方面,作者将检测到的元素转换为具有语义值的数据。提出了一种网络来测量图例匹配阶段图例和检测元素之间的特征相似性。此外,作者还提供了一个关于从信息图表中获取原始表格的baseline,并发现了一些关键的因素来提高各个阶段的性能。实验结果证明了该系统的有效性。

    04

    外生菌根对有机氮的获取介导了温带优势树的 CO2 施肥反应

    摘要:植物-菌根相互作用介导植物氮 (N) 限制,并可以为模型预测提供二氧化碳增加对植物生长影响的持续时间和强度。我们提出了树木年代学证据,表明北方红橡木对沿着成熟温带森林中自然土壤养分梯度增加的环境二氧化碳 (iCO2) 产生积极但依赖于环境的施肥反应。我们通过将外生菌根 (ECM) 真菌 N 觅食性状的宏基因组测量与植物吸收土壤有机质 (N-SOM) 中无机 N 和 N 的树木年代学模型联系起来,研究了这种异质反应。N-SOM 推定在无机氮可用性低的条件下促进了树木的生长,土壤条件下 ECM 真菌群落具有更大的基因组潜力来衰减 SOM 并获得 N-SOM。这些树经过 38 年的 iCO2 施肥。相比之下,占据无机富氮土壤的树木承载着 ECM 真菌群落,其 SOM 衰变能力降低,并对 iCO2 表现出中性生长反应。这项研究阐明了 ECM 真菌群落中 N 觅食性状的分布如何控制树木对 N-SOM 的访问以及随后对 iCO2 的生长反应。

    01

    数字化转型引领文旅体验升级:多国探索“科技+文旅”新路径

    为应对新冠肺炎疫情影响,数字化旅游的新模式加快发展。一些国家的旅游景区,不仅借助数字技术将景点或展品放到网上,而且加强了景区自身的数字化建设,着眼后疫情时代,为游客提供更为丰富的互动体验和智能化服务。 “足不出户,便可游览埃及的很多景点和古迹,如同身临现场一般,这是我没有想到的。”易卜拉欣ni'b是一位埃及旅游发烧友,说起数字化旅游,他表示,“这是一种全然不同以往的感受,除了身临其境的真实感之外,还有一种玩游戏的感觉,三维清晰画面比实地参观景点更富有视觉冲击力,而且我还可以掌握前行的节奏,随时随处停下来

    03

    ggplot2--R语言宏基因组学统计分析(第四章)笔记

    ggplot2可以用来创建优雅的图形,由于它的灵活,简洁和一致的接口,可以提供美丽、可直接用来发表的图形,吸引了许多用户,特别是科研领域的用户。ggplot2使用grid包来提供一系列的高水平的函数,并将其延伸为图形语法,即独立指定绘图组件,并将它们组合起来,以构建我们想要的任何图形显示。图形语法包含6个主要成分:data, transformations, element, scales, guide和 coordinate system。图层图形语法源于多层数据构建图形的想法。它定义了下表中的图形组分:data, aesthetic mappings, statistical transformations, geometric objects, position adjustment, scales, coordinate system 和 faceting(数据、几何映射、统计变换、几何对象、位置调整、比例、坐标和面)。数据、几何映射、统计变换、几何对象、位置调整形成一个图层,一个图可以有多个图层。

    02
    领券