首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何将数据类型从object转换为numeric &然后求出pandas中每一行的平均值?例如:将'<17,500,>=15,000‘转换为16250(mean val)

要将数据类型从object转换为numeric,并求出pandas中每一行的平均值,可以按照以下步骤进行操作:

  1. 导入所需的库:
代码语言:txt
复制
import pandas as pd
import re
  1. 创建一个包含数据的DataFrame:
代码语言:txt
复制
data = {'value': ['<17,500', '>=15,000']}
df = pd.DataFrame(data)
  1. 定义一个函数,用于将数据类型从object转换为numeric:
代码语言:txt
复制
def convert_to_numeric(value):
    value = re.sub('[^\d.]', '', value)  # 去除非数字和小数点的字符
    return pd.to_numeric(value)
  1. 将DataFrame中的数据类型从object转换为numeric:
代码语言:txt
复制
df['value'] = df['value'].apply(convert_to_numeric)
  1. 计算每一行的平均值:
代码语言:txt
复制
df['mean'] = df.mean(axis=1)
  1. 打印结果:
代码语言:txt
复制
print(df['mean'])

这样就可以将数据类型从object转换为numeric,并求出每一行的平均值。

对于这个问题,腾讯云没有特定的产品或链接与之相关。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

在Pandas中更改列的数据类型【方法总结】

例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...在这种情况下,设置参数: df.apply(pd.to_numeric, errors='ignore') 然后该函数将被应用于整个DataFrame,可以转换为数字类型的列将被转换,而不能(例如,它们包含非数字字符串或日期...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。...']}, dtype='object') >>> df.dtypes a object b object dtype: object 然后使用infer_objects(),可以将列’a’的类型更改为...astype强制转换 如果试图强制将两列转换为整数类型,可以使用df.astype(int)。 示例如下: ? ?

20.3K30

1w 字的 pandas 核心操作知识大全。

pd.read_table(filename) # 从分隔的文本文件(例如CSV)中 pd.read_excel(filename) # 从Excel文件 pd.read_sql(query,...connection_object) # 从SQL表/数据库中读取 pd.read_json(json_string) # 从JSON格式的字符串,URL或文件中读取。...# 用均值替换所有空值(均值可以用统计模块中的几乎所有函数替换 ) s.astype(float) # 将系列的数据类型转换为float s.replace...).agg(np.mean) # 在所有列中找到每个唯一col1 组的平均值 df.apply(np.mean) #np.mean() 在每列上应用该函数...(":","-") 12.replace 将指定位置的字符,替换为给定的字符串(接受正则表达式) replace中传入正则表达式,才叫好用; 先不要管下面这个案例有没有用,你只需要知道,使用正则做数据清洗多好用

14.8K30
  • 快速掌握apply函数家族推荐这篇文档

    ❞ 例如,下面的代码使用 sapply 函数将列表中的每个字符串转换为大写: # 创建列表 x <- list("apple", "banana", "cherry") # 使用 sapply 函数对列表中的每个字符串执行...例如,下面的代码使用 apply 函数求出矩阵中每一列的和: # 创建矩阵 x <- matrix(1:9, nrow = 3) # 使用 apply 函数求出矩阵中每一列的和 apply(x, 2,...函数求出矩阵中每一列的最大值: # 创建矩阵 x <- matrix(1:9, nrow = 3) # 使用 apply 函数求出矩阵中每一列的最大值 apply(x, 2, max) [1] 3...6 9 例子 2:使用 apply 函数将矩阵转置 下面的代码使用 apply 函数将矩阵转置: # 创建矩阵 x <- matrix(1:9, nrow = 3) # 使用 apply 函数将矩阵转置...tapply(df$height, df$gender, mean) F M 162.50 176.67 注意,tapply 函数的返回值是一个向量,其中的每个元素表示对应的分组的平均值

    2.9K30

    Pandas速查卡-Python数据科学

    =n) 删除所有小于n个非空值的行 df.fillna(x) 用x替换所有空值 s.fillna(s.mean()) 将所有空值替换为均值(均值可以用统计部分中的几乎任何函数替换) s.astype(float...) 将数组的数据类型转换为float s.replace(1,'one') 将所有等于1的值替换为'one' s.replace([1,3],['one','three']) 将所有1替换为'one',...) 从一列返回一组对象的值 df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1)[col2] 返回col2中的值的平均值,按col1中的值分组(平均值可以用统计部分中的几乎任何函数替换...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max...() 查找每个列中的最大值 df.min() 查找每列中的最小值 df.median() 查找每列的中值 df.std() 查找每个列的标准差 点击“阅读原文”下载此速查卡的打印版本 END.

    9.2K80

    Pandas 数据类型概述与转换实战

    对于 pandas 来说,它会在许多情况下自动推断出数据类型 尽管 pandas 已经自我推断的很好了,但在我们的数据分析过程中,可能仍然需要显式地将数据从一种类型转换为另一种类型。...本文将讨论基本的 pandas 数据类型(又名 dtypes ),它们如何映射到 python 和 numpy 数据类型,以及从一种 pandas 类型转换为另一种的方法 Pandas 数据类型 数据类型本质上是编程语言用来理解如何存储和操作数据的内部结构...() 使用 astype() 函数 将 pandas 数据列转换为不同类型的最简单方法是使用 astype(),例如,要将 Customer Number 转换为整数,我们可以这样调用它: df['Customer...') return float(new_val) 该代码使用 python 的字符串函数去除“$”和“,”,然后将值转换为浮点数 也许有人会建议使用 Decimal 类型的货币。...这两者都可以简单地使用内置的 pandas 函数进行转换,例如 pd.to_numeric() 和 pd.to_datetime() Jan Units 转换存在问题的原因是列中包含非数字值。

    2.5K20

    pandas读取表格后的常用数据处理操作

    这篇文章其实来源于自己的数据挖掘课程作业,通过完成老师布置的作业,感觉对于使用python中的pandas模块读取表格数据进行操作有了更深层的认识,这里做一个整理总结。...本文总结了一些通过pandas读取表格并进行常用数据处理的操作,更详细的参数应该关注官方参数文档 1、读取10行数据 相关参数简介: header:指定作为列名的行,默认0,即取第一行的值为列名,数据为列名行以下的数据...nrows:需要读取的行数(从文件头开始算起) tabledata = pandas.read_excel("....这个的思路和上面一个基本一致,区别在于我们需要线求出平均值。...平均值的求解肯定不需要缺失值参与,于是我们先取出某一列不存在的缺失值的所有数据,再取出这一列数据,通过mean函数直接获取平均值。

    2.4K00

    快速提升效率的6个pandas使用小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...('titanic') df.head() 查看该数据集各列的数据类型: df.dtypes 可以看到各列的数据类型不太一样,有int、object、float、bool等。...将strings改为numbers 在pandas中,有两种方法可以将字符串改为数值: astype()方法 to_numeric()方法 先创建一个样本dataframe,看看这两种方法有什么不同。...df['sales'] = pd.to_numeric(df['sales'], errors='coerce') df 现在sale列中的-已经被替换成了NaN,它的数据类型也变成了float。...从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?

    3.3K10

    超级攻略!PandasNumPyMatrix用于金融数据准备

    adjust bool, default True 调整,在开始期间除以递减的调整因子,以解决相对权重的不平衡问题(将EWMA视为移动平均值)。...例如,该系列的EW移动平均值 将会 当adjust=False为时,将以递归方式计算指数加权函数: ignore_na bool, default False 计算权重时忽略缺失值;指定...NumPy NumPy是专为简化Python中的数组运算而设计的,每个NumPy数组都具有以下属性: ndim:维数。 shape:每一维的大小。 size:数组中元素的总数。...dtype:数组的数据类型(例如int、float、string等)。...# Numpy 模块 >>> import numpy as np 将数据集转换为numpy # 将打开的DataFrame转换为numpy数组 >>> Open_array = np.array(dataset

    7.3K30

    6个提升效率的pandas小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...查看该数据集各列的数据类型: df.dtypes ? 可以看到各列的数据类型不太一样,有int、object、float、bool等。...将strings改为numbers 在pandas中,有两种方法可以将字符串改为数值: astype()方法 to_numeric()方法 先创建一个样本dataframe,看看这两种方法有什么不同。...从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?...做法是分别读取这些文件,然后将多个dataframe组合到一起,变成一个dataframe。 这里使用内置的glob模块,来获取文件路径,简洁且更有效率。 ?

    2.9K20

    6个提升效率的pandas小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...查看该数据集各列的数据类型: df.dtypes ? 可以看到各列的数据类型不太一样,有int、object、float、bool等。...将strings改为numbers 在pandas中,有两种方法可以将字符串改为数值: astype()方法 to_numeric()方法 先创建一个样本dataframe,看看这两种方法有什么不同。...从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?...做法是分别读取这些文件,然后将多个dataframe组合到一起,变成一个dataframe。 这里使用内置的glob模块,来获取文件路径,简洁且更有效率。 ?

    2.4K20

    R语言的数据结构与转换

    任何数据分析的第一步都是按照所需要的格式创建数据集。在 R 中,这个任务包括两个步骤:首先选择一种数据结构来存储数据,然后将数据输入或者导入这个数据结构中。...每一个向量中的数据类型必须一致。...object length” # 2 4 6 5 7 常用的统计函数 函数 描述 length(x) 求 x 中元素的个数 mean(x) 求 x 的算术平均值 median(x) 求 x 的中位数...例如: patients$age mean(patients$age) 大部分结构化的医学数据集均以数据框的形式呈现,因此,数据框是最常处理的数据结构。 数据类型的转换:is.、as....在进行数据分析时,分析者需要对数据的类型熟稔于心,因为数据分析方法的选择与数据的类型是有密切联系的。R 提供了一系列用于判断某个对象的数据类型的函数,还提供了将某种数据类型转换为另一种数据类型的函数。

    60030

    AI开发最大升级:Pandas与Scikit-Learn合并,新工作流程更简单强大!

    fit方法找到转换过程中使用的关键属性。例如,对于SimpleImputer,如果策略是“均值”,那么它就会在fit方法中找到每一列的均值。它会存储每一列的均值。...一般不对列中的值进行编码,而是通常将列中的值减去每列的平均值并除以标准差,对列中的值进行标准化。这有助于让许多模型产生更好的拟合结果(比如脊回归)。...首先使用dtypes属性查找每列的数据类型,然后测试每个dtype的类型是否为“O”。 dtypes属性会返回一系列NumPy dtype对象,每个对象都有一个单一字符的kind属性。...在本文的示例中,我们将使用每一列。 然后,将类别列和数字列分别创建单独的流程,然后使用列转换器进行独立转换。这两个转换过程是并行的。最后,将每个转换结果连接在一起。...例如,如果热编码器允许在使用fit方法期间忽略缺失值,那就更好了,那就可以简单地将缺失值编码为全零行。而目前,它还要强制用户用一些字符串去填充缺失值,然后将此字符串编码为单独的列。

    3.6K30
    领券