首页
学习
活动
专区
工具
TVP
发布

Ignition Gazebo机器人模拟仿真支持ROS1 Noetic和ROS2 Foxy

它提供了广泛的功能,包括: 类型模板化的姿势,矩阵,向量和四元数类。 形状表示以及用于计算体积,密度,尺寸和其他属性的运算符。 材料属性,质量,惯性,温度,PID,千米数,球坐标和过滤的类。...Ignition Physics 许多物理模拟软件库已针对不同的应用程序(游戏,机器人技术,科学)设计并具有不同的功能(刚性或可变形接触,2d或3d)。...它提供了用于创建3D图形应用程序的统一API,并支持基于物理的渲染(PBR)。它附带了对Ogre 1和Ogre 2引擎的支持。...视听库支持处理音频和视频文件,图形库可以将各种3D网格纹理文件格式加载到通用的内存表示形式中,而Ignition Common的核心库包含跨Base64编码/解码到线程池的功能。...动画处理和BVH加载器。 Profiler:通用的Profiler抽象,可用于测量和可视化各种软件的运行时间。

39620

ROS、OpenAI和Gazebo机器人与人工智能仿真与实践教研杂记(二)环境构建

然而,它们将具有可由RGB相机看到的3D可视化,以及可由基于GPU的深度传感器检测的3D网格。 该教程详细解释了如何创建不与模拟其余部分交互的开环轨迹。...主要区别是: 演员总是静止的(即没有施加力,无论是重力还是接触或其他任何东西) Actors支持从COLLADA和BVH文件导入的骨架动画。 演员可以在SDF中直接编写轨迹。...脚本轨迹 这是演员的高级动画,包括指定在特定时间到达的一系列姿势。Gazebo负责插入它们之间的运动,因此运动是流动的。...每个航路点由a time和a组成pose: time:以脚为单位的时间,从脚本开头算起,应该达到姿势。 pose:应该达到的姿势 提示:定义航点的顺序并不重要,它们将遵循给定的时间。...骨架 Gazebo支持两种不同的骨架动画文件格式: COLLADA(.dae)和 Biovision Hierarchy(.bvh)。 尝试一下Gazebo附带的简单示例文件。

46610
您找到你想要的搜索结果了吗?
是的
没有找到

每日学术速递5.17

我们采用 3D 超声成像方案来提取内部生物力学结构,即颈椎七块椎骨的精确 3D 旋转信息。...使用多模态数据集,我们通过将 3D 头部和颈部描绘从中性表情和其余骨骼姿势分离为各种形状、姿势、表情和喉部混合形状来训练参数化 HACK 模型。...特别是,我们证明了直接在直接从化学文件格式(如 XYZ 文件、晶体信息文件 (CIF) 或蛋白质数据库文件 (PDB))派生的序列上训练的语言模型可以直接生成三种分子、晶体和蛋白质结合位点方面。...此外,尽管接受了化学文件序列的训练——语言模型的性能仍可与使用图形和图形派生字符串表示的最先进模型以及其他特定领域的 3D 生成模型相媲美。...,但无法很好地扩展到长序列,例如高分辨率图像、播客、代码或书籍。

10010

基于结构的药物设计与几何深度学习

使用测地线卷积将这些特征转换为数值向量用于下游任务。以上两个步骤对于最初的方法来说非常昂贵,但是dMaSIF是端对端可微的并且直接作用于原子类型和坐标。...该方法在两个阶段生成可控数量的结合姿势:首先,评分模型使用逆扩散过程将随机初始的配体姿势通过旋转、平移、改变键角转换为预测的姿势。...其次,置信模型预测一个二分类标签表明生成的配体姿势的均方误差是否小于阈值,以此来评估结合姿势的正确率。其中,评分模型使用蛋白质表示是残基级别的3D图,置信模型使用的是原子级别的3D图表示。...化学语言模型 当前,用于分子从头设计的最成功的深度学习模型是所谓的化学语言模型(CLMs),它们使用基于序列的分子表示(例如SMILES序列)。...如下图所示: 此外,还有人使用基于3D网格的蛋白质结合位点表示作为输入,用于学习隐空间然后被编码成序列

72140

Importing and exporting shapes

今天介绍下如何向VREP中导入三维图以及如何将VREP中的三维图导出。 01 Importing Shapes V-REP使用三角形网格来描述和显示形状。...有几个转换应用程序允许这个操作,而且大多数3D绘图应用程序也很好地支持这一点。...DXF : AutoCAD文件格式(Autodesk)。文件中可能包含的非3D信息将被忽略。 STL (ASCII或二进制) : 3D系统文件格式。支持ASCII和二进制文件。...另外,也可以使用以下V-REP功能: [Menu bar --> Edit --> Morph selection into convex shapes]:允许将选择的形状转换为凸形。...(注意:只会导出选中的对象): OBJ:波前技术文件格式。 STL(二进制):3D系统文件格式。导出只支持二进制格式。这是V-REP中最紧凑的导出选项。

79110

CMU提出基于学习的动作捕捉模型,用自监督学习实现人类3D动作追踪

图1 动作捕捉的自监督学习 给定一个视频序列和一组2D肢体关节热图,我们的网络可预测SMPL3D人体网格模型的肢体参数。...我们提出了一个在单目视频中进行动作捕捉的神经网络模型,学习将一个图像序列映射到一个相应的3D网格序列中。深度学习模型的成功在于从大规模注释数据集中进行监督。...在真实视频中,我们的工作通过将手动渲染模型的大规模合成数据中的强监督、与3D关键点的3D2D可微渲染、动作和分割以及真实独目视频中2D相应检测量的匹配中所包含的监督相结合,从而避免了真实视频中缺乏3D...我们使用SMPL作为我们的密集人体3D网格模型。它由一定数量的固定拓扑结构顶点和三角形拓扑结构组成,其中,全局姿势由身体各部分之间的角度θ控制,局部姿势由网格表面参数β控制。...我们的模型在人类3D姿势之外的扩展将使神经智能体以人类的经验学习3D,而其仅由视频动作进行监督。

1.7K100

C#与yaml解析

YAML 官方网站称 YAML 是"一种所有编程语言可用的友好的数据序列化标准"。YAML Ain't Markup Language,和GNU一样,YAML是一个递归着说"不"的名字。...YAML文件格式主要集中于空格缩进的概念,它用于指出数据的层次结构 而不是使用XML嵌套标记或JSON的大括号({})和方括号([]),实际上,它是JSON的一个超集,因此,在使用的时候,你可能需要采用...•Deserializing反序列化 YAML 文档转换为对象图。 •Serializing 序列化 将对象转换为其 YAML 表示形式。...•在反序列化期间 Validating 通过操纵的反序列化器节点列表,很容易将行为添加到反序列化程序。此示例演示当他们被反序列化如何验证对象。...• YAML转换为 JSON 和JSON 转换为YAML ,使用 Json.NET 的 JSON 转换 YAML 显示如何将 YAML 文件转换为 JSON。

2.8K50

ch-Character Animator 2022 下载安装教程讲解+各版本安装获取

您可以通过实时表现、可触发的姿势和情绪来开始制作动画。您无需具备专业知识。准备好后,就可以升级到专业模式。以下是入门模式提供的一些功能:入门模式提供示例人偶,且可以导入人偶。...您可以预览可触发的姿势、情绪和背景。快速导出功能支持以 H264 文件格式直接导出动画。快速导出您可以在入门模式和专业模式下快速导出动画。使用快速导出功能直接以 H264 文件格式导出动画。...选择“匹配源”预设可自动将分辨率和帧速率等设置与序列匹配,或者从常用视频分辨率的列表中进行选择。入门模式和专业模式均支持快速导出。...自动交换图稿和引导/跟随行为自动交换会自动切换为与角色的运动最匹配的姿势。如果有一组展现不同姿势的图层,请使用“自动交换”选项从该组创建交换集。在控制角色时,将触发最佳匹配图稿。...使用键盘或 MIDI 设备控制挥手等姿势。您可以将动作保存为按钮,它相较于按键命令而言更便于记忆。 4、表演时间。

49700

识别自动驾驶的深度

相反,它们使用图像序列中的连续时间帧来提供训练信号。为了帮助限制学习,使用了姿势估计网络。在输入图像与从姿势网络和深度网络的输出重建的图像之间的差异上训练模型。稍后将更详细地描述重建过程。...深度解码器类似于先前的工作,在该工作中,它将S型输出转换为深度值。 ? U-Net的样本图像[2] ?...它从序列中的另一幅图像的角度预测目标图像的外观,该序列是前一帧还是后一帧。 训练 下图说明了该体系结构的训练过程。 ?...此过程需要先将深度图转换为3D点云,然后再使用相机内在函数将3D位置转换为2D点。所得的点用作采样网格,以从目标图像进行双线性插值。...它们通过预测单个对象而不是整个图像的运动来改善姿势网络。因此,现在重建的图像序列不再是单个投影,而是组合在一起的一系列投影。

75010

超100篇!CVPR 2020最全GAN论文梳理汇总!

姿势引导人像生成旨在将源人图像转换为目标姿势。此任务需要对源数据进行空间操作。但是,卷积神经网络由于缺乏对输入进行空间变换的能力而受到限制。本文提出一个可微分的全局流-局部注意力框架。...生成式卷积神经网络,如GAN架构依赖于基于卷积的上采样方法来生成非标量输出(图像或视频序列等)。本文表明常见的上采样方法(反卷积或置卷积)导致此类模型无法正确再现训练数据的频谱分布。...本文提出将合成图像转换为真实域的方法(显式形状和姿势变形),该方法始终优于现有的图像转换方法。方法可在合成图像上训练姿势估计器,然后将其推广到真实的图像。 ?...StyleGAN可以生成具有极具真实感的肖像图像,但缺乏对3D可解释的语义参数(如脸部姿势,表情,和场景照明)。...提出了一种更具可控性的人脸图像生成方法,以解耦表示人的身份,表情,姿势和光照因素等。将3D先验嵌入到对抗性学习中,并训练网络以模仿3D面部变形和渲染过程的图像形成。

2.9K20

介绍 ComPDFKit 转换 SDK 1.5.0

该版本满足了用户PDFRTF、PDFHTML的需求。在这篇博文中,我们将详细介绍这两种格式,并向您展示如何将 PDF 转换为 RTF 和 HTML。...PDF RTF尽管 PDF 是一种用于发送和共享文件的安全格式,但如果您与没有 PDF 处理器的人共享它们,则很难打开 PDF 文件。...为确保任何人都可以打开和阅读文件,您可以选择将 PDF 转换为 RTF。如何转换使用 ComPDFKit,您可以毫不费力地将 PDF 转换为 RTF。这里我们以C#为例。...HTML 由许多标签组成,包括显示文本、表格、有序列表和无序列表等。如果您想了解更多有关 HTML 的知识,请点击这里。...如何转换查看如何在 C# 中使用 ComPDFKit 将 PDF 转换为 HTML。

95120

商汤的数字人研究,在CVPR上成了爆款

值得注意的是,新方法没有人工手动标记舞蹈单元,而是利用无监督学习的方式将 3D 关节序列编码和量化为码本,学习出舞蹈中重要且可复用的舞蹈元素。...为了进一步扩大舞蹈记忆可以表示的范围,研究人员将 3D 姿势划分为上半身和下半身的组合让 AI 分别进行学习,这样一段舞蹈可以表示为一系列成对的姿势编码。...然后,为了将这些编码的舞姿组合成一段舞蹈,作者引入了一个名为 motion GPT 的类 GPT 网络,将音乐转换为舞姿编码序列。...由于 3D 姿势在【编舞记忆】中被划分为上下半身,这里还需要通过跨条件因果注意层来增强运动 GPT,以保证上下身的协调性。...Bailando 的推理过程:给定一段音乐和一个起始姿势编码对,actor-critic GPT 自回归预测未来的姿势编码序列,然后利用【编舞记忆】将编码序列转化为量化特征,最后由基于 CNN 的专用解码器解码出

61210

必看,10篇定义计算机视觉未来的论文

使用的模型/架构:语音到姿势转换模型(Speech to gesture translation model)。采用一个卷积音频编码器下采样 2D 语谱图并转换为 1D 信号。...接着翻译模型 G 预测一个相应的 2D 姿势时序栈。回归到真实姿势的 L1 提供一个训练信号,与此同时,采用一个对抗判别器 D ,确保所预测姿势和讲者风格一致。...模型精确度:研究人员对基准和实际姿势序列的语音和姿势转换结果进行了定量比较(作者们展示的表格表明新模型损耗较低, PCK 较高)。...这个自由视角渲染的人体神经元模型无需 3D 显式形状建模。 使用的模型/架构:神经元贴图系统概览。输入姿势对应为一个 “骨骼” 光栅堆栈(一个骨骼对应一个通道)。...还有另一文章和 Youtube 上的 2 个单眼短序列。 ?

40350

英伟达肖像动画新模型SPACEx发布,三步就让照片里的人「活」过来!

2686096766525784064&format_id=10002&support_redirect=0&mmversion=false 在以往,图像生成动画领域最近的工作都是利用语音信号来驱动动画过程,这个过程需要学习如何将输入语音映射到面部表征...这些网络可以将输入的音频序列换为可使用的token,以及学习到的情感嵌入,以将这些token映射到相应的姿势。...但是,这些方法需要特殊的训练数据,例如3D面部模型,而这些数据,可能不适用于许多应用程序。 而其他方法虽然适用于2D面部,也可以根据输入的音频信号生成逼真的嘴唇动作。...数据集处理 基于生成的说话人视频,研究团队首先使用3DDFA特征识别模型,提取视频每帧68个3D面部特征点和头部姿势。...随后,研究团队使用预测的头部姿势,将3D面部特征转正,并正交投影到 2D平面上。 同时,研究团队将每个帧归一化,例如固定两个耳朵之间的距离。

45330

图片+音频秒变视频!西交大开源SadTalker:头、唇运动超自然,中英双语全能,还会唱歌

最近来自西安交通大学等的研究人员提出了SadTalker模型,在三维运动场中进行学习从音频中生成3DMM的3D运动系数(头部姿势、表情),并使用一个全新的3D面部渲染器来生成头部运动。...的人脸动画,主要关注在对话式人脸动画中特定类别的运动,同样很难合成高质量的视频,因为虽然三维面部模型中包含高度解耦的表征,可以用来单独学习面部不同位置的运动轨迹,但仍然会生成不准确的表情和不自然的运动序列...最后通过一个受face-vid2vid启发设计的3D感知的面部渲染来驱动源图像。...研究人员提出mappingNet来学习显式3DMM运动系数(头部姿势和表情)和隐式无监督3D关键点之间的关系。...在对比方法中,选取了几种最先进的谈话头像生成方法,包括MakeItTalk、Audio2Head和音频表情生成方法(Wav2Lip、PC-AVS),使用公开的checkpoint权重进行评估。

37910

导入 3D 模型-将您自己的设计融入现实生活中

3DS 3D的常用文件格式 无论使用哪种建模软件,您都可以导入或导出到其他类型的文件中。这是您可以找到的常见格式列表。...在2018年的WWDC上,Apple刚刚宣布了与Pixar合作的增强现实内容的新文件格式。该USDZ文件将是整个软件使用通用的格式,可以与朋友和同事之间轻松共享。...所以你刚刚导入了3D模型。它是如此简单! 将文件转换为场景 首先,展开文件夹,然后单击刚刚在项目中添加的文件。建议将3D资源转换为场景文件以优化性能。...在菜单栏中,转到编辑器,然后转换为SceneKit场景文件格式(.scn)。现在您可以看到您的模型具有.scn扩展名。 节点布局 在场景图中,我们可以看到节点是如何布局的,哪些是父节点,哪些是子节点。...3D Textures Motionworks Vray Textures 结论 因此,在这里您学习了如何将3D模型导入Xcode,调整它以便在程序中进行优化并实现更好的交互。

1.9K10

用AI「驯服」人类幼崽:这个奶爸找到了硬核带娃的乐趣

具体步骤是:安装 OpenPose,将 PyTorch 转换为 TensorRT,下载预训练 resnet18 骨干模型。 为了获取来自摄像头的视频内容,我使用另一个库 Jetcam。...在飞行时,两只翅膀基于这一动角度同步移动。选择手肘而不是手腕是为了最大化可见度,因为手腕经常会掉出摄像头视角或被其他身体部位遮挡住。...游戏复位姿势:当左右肩膀的水平位置反转时则为游戏复位姿势,如玩家背对摄像头。游戏将复位,Griffin 回到站在树上的姿势,准备下一次飞行。 ? 起飞和复位手势识别。...但是,将动作和姿势映射结果发送至 3D 游戏引擎就不那么简单了,因为游戏引擎是用 C++ 写的。...此外,即使可能,我也不想花费好几周时间将 C++ 转换为 Python 代码。 此时我需要以最小花销高效地在这二者之间传递信息。

55530

深度学习-最新论文解释

2019 一月 - 3D 姿势估计 姿势估计器将视频作为输入,并输出与视频中存在的人类个体的姿势相对应的图形。...创建可靠且实时的 3D 姿势估计器的当前困难包括这样的事实:几乎没有训练数据,以及必须考虑遮挡的事实。例如,如果特定身体部位被阻挡而不能看到,则姿势估计器仍必须能够从身体其余部分的位置推断出其位置。...该模型优于所有现有模型,因为它创建姿势的 2D 和 3D 表示。它使用初始 2D 姿态估计,然后利用将该 2D 估计转换为 3D 形式的神经网络。...然后,它使用 3D 到 2D 神经网络网络将姿势转换回 2D 形式,这有助于通过自我监督校正机制改进中间 3D 姿势预测,该机制可以检测第一个 2D 到 3D 的准确度神经网络。...七月 - Phrank 所产生的算法使基因诊断中最劳动密集的部分自动化,即将患者的基因序列和症状与科学文献中描述的疾病相匹配。

59600

终于有人把3D打印讲明白了

▲图1-3 一个非水密的开放表面模型,由于它由一组无限薄的面组成,因此无法打印 然后需要将CAD文件转换为能够被AM机器识别的文件格式。...当前,能够被AM机器识别的最常用的文件格式是STL文件(也称为标准三角语言、立体光刻语言或标准曲面细分语言),该格式可以将原始CAD文件转换为三角面片文件。...▲图1-4 STL文件分辨率示例 最近,有人提出了一些新的增材制造文件格式,包括增材制造文件格式(Additive Manufacturing File Format,AMF)和3D制造格式(3D Manufacturing...在这些文件格式发布的时候,3MF似乎比AMF更具有吸引力。 3MF或3D制造格式是由3MF联盟开发和发布的文件格式。...他主要负责研究如何将复杂的外形设计集成到定制化产品中,例如,如何将数值计算、制造、结构设计和实用性问题(包括拓扑优化、创成式设计)综合应用到增材制造领域中。

50440
领券