首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

akka-streams - 从应用角度学习:basic stream parts

实际上很早就写了一系列关于akka-streams的博客。但那个时候纯粹是为了了解akka而去学习的,主要是从了解akka-streams的原理为出发点。因为akka-streams是akka系列工具的基础,如:akka-http, persistence-query等都是基于akka-streams的,其实没有真正把akka-streams用起来。这段时间所遇到的一些需求也是通过集合来解决的。不过,现在所处的环境还是逼迫着去真正了解akka-streams的应用场景。现状是这样的:跨入大数据时代,已经有大量的现代IT系统从传统关系数据库转到分布式数据库(非关系数据库)了。不难想象,这些应用的数据操作编程不说截然不同吧,肯定也会有巨大改变。特别是在传统SQL编程中依赖数据关系的join已经不复存在了,groupby、disctict等操作方法也不是所有的分布式数据库都能支持的。而这些操作在具体的数据呈现和数据处理中又是不可缺少的。当然,有很多需求可以通过集合来满足,但涉及到大数据处理我想最好还是通过流处理来实现,因为流处理stream-processing的其中一项特点就是能够在有限的内存空间里处理无限量的数据。所以流处理应该是分布式数据处理的理想方式了。这是这次写akka-streams的初衷:希望能通过akka-streams来实现分布式数据处理编程。

01

restapi(8)- restapi-sql:用户自主的服务

学习函数式编程初衷是看到自己熟悉的oop编程语言和sql数据库在现代商业社会中前景暗淡,准备完全放弃windows技术栈转到分布式大数据技术领域的。但是在现实中理想总是不如人意,本来想在一个规模较小的公司展展拳脚,以为小公司会少点历史包袱,有利于全面技术改造。但现实是:即使是小公司,一旦有个成熟的产品,那么进行全面的技术更新基本上是不可能的了,因为公司要生存,开发人员很难新旧技术之间随时切换。除非有狂热的热情,员工怠慢甚至抵制情绪不容易解决。只能采取逐步切换方式:保留原有产品的后期维护不动,新产品开发用一些新的技术。在我们这里的情况就是:以前一堆c#、sqlserver的东西必须保留,新的功能比如大数据、ai、识别等必须用新的手段如scala、python、dart、akka、kafka、cassandra、mongodb来开发。好了,新旧两个开发平台之间的软件系统对接又变成了一个问题。

01

Akka-Cluster(2)- distributed pub/sub mechanism 分布式发布/订阅机制

上期我们介绍了cluster singleton,它的作用是保证在一个集群环境里永远会有唯一一个singleton实例存在。具体使用方式是在集群所有节点部署ClusterSingletonManager,由集群中的leader节点选定其中一个节点并指示上面的ClusterSingletonManager运行一个cluster singleton实例。与singleton实例交互则通过即时构建ClusterSingletonProxy实例当作沟通目标。从应用场景来说cluster singleton应该是某种pull模式的应用:我们把singleton当作中央操作协调,比如说管理一个任务清单,多个ClusterSingletonProxy从任务清单中获取(pull)自己应该执行的任务。如果需要实现push模式的任务派送:即由singleton主动通知集群里某种类型的actor执行任务,那么通过ClusterSingletonProxy沟通就不适用了,使用pub/sub方式是一个可行的解决方案。

04

restapi(4)- rest-mongo : MongoDB数据库前端的httpserver

完成了一套标准的rest风格数据库CRUD操作httpserver后发现有许多不足。主要是为了追求“通用”两个字,想把所有服务接口做的更“范generic”些,结果反而限制了目标数据库的特点,最终产生了一套功能弱小的玩具。比如说吧:标准rest风格getbyId需要所有的数据表都具备id这个字段,有点傻。然后get返回的结果集又没有什么灵活的控制方法如返回数量、字段、排序等。特别对MongoDB这样的在查询操作方面接近关系式数据库的分布式数据库:上篇提到过,它的query能力强大,条件组合灵活,如果不能在网络服务api中体现出来就太可惜了。所以,这篇博文会讨论一套专门针对MongoDB的rest-server。我想达到的目的是:后台数据库是MongoDB,通过httpserver提供对MongoDB的CRUD操作,客户端通过http调用CRUD服务。后台开发对每一个数据库表单使用统一的标准增添一套新的CRUD服务。希望如此能够提高开发效率,减少代码出错机会。

02

Akka-Cluster(5)- load-balancing with backoff-supervised stateless computation - 无状态任务集群节点均衡分配

分布式程序运算是一种水平扩展(scale-out)运算模式,其核心思想是能够充分利用服务器集群中每个服务器节点的计算资源,包括:CPU、内存、硬盘、IO总线等。首先对计算任务进行分割,然后把细分的任务分派给各节点去运算。细分的任务相互之间可以有关联或者各自为独立运算,使用akka-cluster可以把任务按照各节点运算资源的负载情况进行均匀的分配,从而达到资源的合理充分利用以实现运算效率最大化的目的。如果一项工作可以被分割成多个独立的运算任务,那么我们只需要关注如何合理地对细分任务进行分配以实现集群节点的负载均衡,这实际上是一种对无需维护内部状态的运算任务的分配方式:fire and forget。由于承担运算任务的目标actor具体的部署位置是由算法决定的,所以我们一般不需要控制指定的actor或者读取它的内部状态。当然,如果需要的话我们还是可以通过嵌入消息的方式来实现这样的功能。

02

akka-grpc - 基于akka-http和akka-streams的scala gRPC开发工具

关于grpc,在前面的scalaPB讨论里已经做了详细的介绍:google gRPC是一种全新的RPC框架,在开源前一直是google内部使用的集成工具。gRPC支持通过http/2实现protobuf格式数据交换。protobuf即protocol buffer,是google发明的一套全新的序列化传输协议serialization-protocol,是二进制编码binary-encoded的,相对java-object,XML,Json等在空间上占有优势,所以数据传输效率更高。由于gRPC支持http/2协议,可以实现双向通讯duplex-communication,解决了独立request/response交互模式在软件编程中的诸多局限。这是在系统集成编程方面相对akka-http占优的一个亮点。protobuf格式数据可以很方便的转换成 json格式数据,支持对外部系统的的开放协议数据交换。这也是一些人决定选择gRPC作为大型系统微服务集成开发工具的主要原因。更重要的是:用protobuf和gRPC进行client/server交互不涉及任何http对象包括httprequest,httpresponse,很容易上手使用,而且又有在google等大公司内部的成功使用经验,用起来会更加放心。

02

Scala 使用IDEA 对list的常见操作

package test object listDemo {   def main(args: Array[String]): Unit = {     val list: List[String] = List("a", "b" ,"a")     //为列表预添加元素     println("A" +: list)     //在列表开头添加元素     println("c" :: list)     //在列表开头添加指定列表的元素     println(List("d","e") ::: list)     //复制添加元素后列表     println(list :+ "1")     //将列表的所有元素添加到 StringBuilder     val sb = new StringBuilder("f")     println(list.addString(sb))     //指定分隔符     println(list.addString(sb,","))     //通过列表索引获取元素     println(list.apply(0))     //检测列表中是否包含指定的元素     println(list.contains("a"))     //将列表的元素复制到数组中,在给定的数组xs中填充该列表的最多为长度(len)元素,从start位置开始。     val a = Array('a', 'b', 'c')     val b : Array[Char] = new Array(5)     a.copyToArray(b,0,1)     b.foreach(println)     //去除列表的重复元素,并返回新列表     println(list.distinct)     //丢弃前n个元素,并返回新列表     println(list.drop(1))     //丢弃最后n个元素,并返回新列表     println(list.dropRight(1))     //从左向右丢弃元素,直到条件p不成立     println(list.dropWhile(_.equals("a")))     //检测列表是否以指定序列结尾     println(list.endsWith(Seq("a")))     //判断是否相等     println(list.head.equals("a"))     //判断列表中指定条件的元素是否存在,判断l是否存在某个元素     println(list.exists(x=> x == "a"))     //输出符号指定条件的所有元素     println(list.filter(x=> x.equals("a")))     //检测所有元素     println(list.forall(x=> x.startsWith("b")))     //将函数应用到列表的所有元素     list.foreach(println)     //获取列表的第一个元素     println(list.head)     //从指定位置 from 开始查找元素第一次出现的位置     println(list.indexOf("b",0))     //返回所有元素,除了最后一个     println(list.init)     //计算多个集合的交集     println(list.intersect(Seq("a","b")))     //检测列表是否为空     println(list.isEmpty)     //创建一个新的迭代器来迭代元素     val it = list.iterator     while (it.hasNext){       println(it.next())     }     //返回最后一个元素     println(list.last)     //在指定的位置 end 开始查找元素最后出现的位置     println(list.lastIndexOf("b",1))     //返回列表长度     println(list.length)     //通过给定的方法将所有元素重新计算     list.map(x=> x+"jason").foreach(println)     //查找最大元素     println(list.max)     //查找最小元素     println(list.min)     //列表所有元素作为字符串显示     println(list.mkString)

01
领券