话不多说,先来展示一下Seaborn的风采: 热力图 小提琴图 散点矩阵图 多元散点图 带边际分布的Hexbin图 ---- 下面正式开始讲解如何使用Seaborn绘图 功能简介 Seaborn...控制线性回归的不同因变量并进行参数估计与作图 对复杂数据进行易行的整体结构可视化 对多表统计图的制作高度抽象并简化可视化过程 提供多个内建主题渲染 matplotlib 的图像样式 提供调色板工具生动再现数据...sns.set()可以设置5种风格的图表背景:darkgrid, whitegrid, dark, white, ticks,通过参数style设置,默认情况下为darkgrid风格: 更改为whitegrid...依然以小费数据集为例: 这是一个散点图+线性回归+95%置性区间的组合图 你调整置性区间的大小,传递参数ci:60: 对smoker(是否吸烟)做分类处理,得到两个不同的回归曲线, 传递参数 hue...总结 本介绍了Seaborn安装、风格配置以及各类绘图函数的使用,当然这里只是列举了小部分函数和功能,抛砖引玉,为展示seaborn的强大之处。希望Seaborn能成为大家数据科学路上的得力助手!
seaborn 5种内置风格与matplotlib绘图风格对比 相比matplotlib绘图风格,seaborn绘制的直方图会自动增加空白间隔,图像更为清爽。...绘图结果为散点图+回归直线即置信区间。另外,还可通过logistic参数设置是否启用逻辑回归。...绘图接口有stripplot和swarmplot两种,常用参数是一致的,主要包括: x,散点图的x轴数据,一般为分类型数据 y,散点图的y轴数据,一般为数值型数据 hue,区分维度,相当于增加了第三个参数...x坐标,默认jitter=True;当设置jitter为False时,散点图均严格位于一条直线上) swarmplot 在stripplot的基础上,不仅将散点图通过抖动来实现相对分离,而且会严格讲各散点一字排开...统计(估计)图 pointplot pointplot给出了数据的统计量(默认统计量为均值)和相应置信区间(confidence intervals,默认值为95%,即参数ci=95),并以相应的点和线进行绘图显示
# 绘制花萼长度和花萼宽度的折线图,并设置线型、标记和颜色plt.plot(iris_df['sepal_length'], iris_df['sepal_width'], marker='o', linestyle...color_continuous_scale='RdBu', title='Interactive Heatmap of Correlation Matrix')fig.show()导出图形最后,我们可以将生成的图形导出为静态图像或交互式...# 将交互式散点图导出为HTML文件fig.write_html('interactive_scatter_plot.html')# 将热力图导出为静态图像plt.imshow(correlation_matrix...import seaborn as sns# 设置Seaborn风格sns.set_style('whitegrid')# 绘制花瓣长度和花瓣宽度的散点图plt.scatter(iris_df['petal_length...# 绘制花萼长度和花萼宽度的折线图,并设置线型、标记和颜色plt.plot(iris_df['sepal_length'], iris_df['sepal_width'], marker='s', linestyle
相比matplotlib绘图风格,seaborn绘制的直方图会自动增加空白间隔,图像更为清爽。而不同seaborn风格间,则主要是绘图背景色的差异。 2....另外,还可设置回归模型的阶数,例如设置order=2时可以拟合出抛物线型回归线。 regplot 基础回归模型接口,即regression+plot。绘图结果为散点图+回归直线即置信区间。...绘图接口有stripplot和swarmplot两种,常用参数是一致的,主要包括: x,散点图的x轴数据,一般为分类型数据 y,散点图的y轴数据,一般为数值型数据 hue,区分维度,相当于增加了第三个参数...x坐标,默认jitter=True;当设置jitter为False时,散点图均严格位于一条直线上) ?...统计(估计)图 pointplot pointplot给出了数据的统计量(默认统计量为均值)和相应置信区间(confidence intervals,默认值为95%,即参数ci=95),并以相应的点和线进行绘图显示
本篇是《Seaborn系列》文章的第2篇-散点图。...hue 根据设置的类别,产生颜色不同的点的散点图 eg.下图为根据time分类的散点图 """ sns.scatterplot(x="total_bill", y="tip", hue="time",data...tips = sns.load_dataset("tips") """ 案例3:设置hue 根据设置的类别,产生颜色不同的点的散点图,设置style,使其生成不同的标记的点 eg.下图为hue与style...("tips") """ 案例4:设置hue 根据设置的类别,产生颜色不同的点的散点图,设置style,使其生成不同的标记的点 eg.下图为hue与style设置不同的分类的散点图 """ sns.scatterplot...as sns; sns.set() tips = sns.load_dataset("tips") """ 案例7:同时设置hue和size,根据设置的类别,产生颜色和大小不同的点的散点图 不过这里的颜色使用的是
以下是一个设置中文字体的示例代码:import matplotlib.pyplot as plt# 设置中文字体,修改为您系统上已经安装的中文字体plt.rcParams['font.sans-serif...,包括颜色、线型、标记等。...Matplotlib扩展Seaborn库Seaborn是基于Matplotlib的高级数据可视化库,提供了更美观、更简洁的绘图风格。您可以使用Seaborn来创建统计图表、热图、分布图等。...此外,我们还展示了数据可视化实例,展示了如何将Matplotlib应用于实际数据分析中。最后,我们介绍了Matplotlib的扩展库Seaborn和Plotly,让您了解更多可选的数据可视化工具。...通过深入学习Matplotlib,您可以更好地展示和传达数据,为决策和分析提供有力的支持。
你可以从其基本组件中组装一个图表:数据显示(即绘图的类型:线、条、框、散点图、轮廓等)、图例、标题、刻度标记和其他注释。 在pandas中,我们可能有多个数据列,并且带有行和列的标签。...即使你不适用seaborn的API,你可能更喜欢导入seaborn来为通用matplotlib图表提供更好的视觉美观度。...▲图9-15 水平柱状图和垂直柱状图 选项color='k'和alpha=0.7将柱子的颜色设置为黑色,并将图像的填充色设置为部分透明。...▲图9-24 seaborn回归/散点图 在探索性数据分析中,能够查看一组变量中的所有散点图是有帮助的; 这被称为成对图或散点图矩阵。...参考seaborn.pairplot的文档字符串可以看到更多细节的设置选项。 05 分面网格和分类数据 如果数据集有额外的分组维度怎么办?使用分面网格是利用多种分组变量对数据进行可视化的方式。
关系(一)利用python绘制散点图 散点图 (Scatterplot)简介 1 在笛卡尔座标上放置一系列的数据点,检测两个变量之间的关系,这就是散点图。...plt.show() 3 定制多样化的散点图 自定义散点图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。...通过seaborn绘制多样化的散点图 seaborn主要利用scatterplot和regplot绘制散点图,可以通过seaborn.scatterplot[1]和seaborn.regplot[2]了解更多用法...每组表示一个染色体,每个点表示一个基因 # x轴为该点在染色体的位置,y轴值代表其P值的-log10,越高相关性越强 from pandas import DataFrame from scipy.stats...的scatterplot和matplotlib的plot可以快速绘制散点图,并通过修改参数或者辅以其他绘图知识自定义各种各样的散点图来适应相关使用场景。
分簇散点图 分簇散点图 可以理解为数据点不重叠的分类散点图 该函数类似于stripplot(),但该函数可以对点进行一些调整,使得数据点不重叠。...jitter : float类型,True/1 作用:当数据重合较多时,用该参数做一些调整,也可以设置间距 如,jitter = 0.1 (通俗讲,就是让数据分散开) dodge:bool 作用:若设置为...color:matplotlib 颜色 palette:调色板名称,list类别或者字典 作用:用于对数据不同分类进行颜色区别 size:float 作用:设置标记大小(标记直径,以磅为单位) edgecolor...:matplotlib color,gray 作用:设置每个点的周围线条颜色 linewidth:float 作用:设置构图元素的线宽度 案例教程 import seaborn as sns import...("tips") """ 案例7: 设置size来指定标记的大小 对比案例6和案例7 """ sns.swarmplot(x="time", y="tip", data=tips,
分类散点图 stripplot()可以自己实现对数据分类的展现,也可以作为盒形图或小提琴图的一种补充,用来显示所有结果以及基本分布情况。...color:matplotlib 颜色 palette:调色板名称,list类别或者字典 作用:用于对数据不同分类进行颜色区别 size:float 作用:设置标记大小(标记直径,以磅为单位) edgecolor...:matplotlib color,gray 作用:设置每个点的周围线条颜色 linewidth:float 作用:设置构图元素的线宽度 案例教程 import seaborn as sns import...as plt #设置风格 sns.set(style="whitegrid") # 构建数据 tips = sns.load_dataset("tips") """ 案例5: 绘制水平方向的分类散点图...案例10: 设置要绘制的点的大小(size)以及点的标记(marker="D") 饱和度alpha """ sns.stripplot("day", "total_bill", "smoker", data
你可以看出这两个图示的结果是完全一样的,只是在 seaborn 中标记了 x 和 y 轴的含义。 ?...其中参数 x 是一维数组,bins 代表直方图中的箱子数量,kde 代表显示核密度估计,默认是 True,我们也可以把 kde 设置为 False,不进行显示。...其中参数 data 为 DataFrame 类型,x、y 是 data 中的变量。...其中参数 data 为 DataFrame 类型,x、y 是 data 中的变量。...最后我们在相应的位置上显示出属性名。这里需要用到中文,Matplotlib 对中文的显示不是很友好,因此我设置了中文的字体 font,这个需要在调用前进行定义。
seaborn as sns 数据关系可视化 下面我们使用seaborn最常用的方法relplot()实现散点图scatterplot()和线图lineplot()。...散点图 Scatter plots 首先可以引入seaborn中自带事例子数据集“tips”,这个数据集的属性有: 时间数据 week。...等等… 下面很多例子使用了tips数据集,不会再特别指出 sns.set(style="darkgrid") # 设置样式为网格 tips = sns.load_dataset("tips")...其实seaborn中有很多画散点图的方法其中一种是scatterplot(),使用方法是把数据集中的集合分配给方法中的属性,这样不同集合就会使用散点图中不同属性的样式展示出来如下面实例中的色调属性hue...sns.set(style="ticks", color_codes=True) #设置一下样式 散点图 categories scatterplots 除了种类外,散点图能精确的显示数据的分布,散点图默认显示方式是
提示数据集说明了组织数据集的“整洁”方法。你会得到最出seaborn的,如果你的数据集,这种方式组织,并且在更详细的解释如下。 我们绘制了一个带有多个语义变量的分面散点图。...请注意我们如何仅提供数据集中变量的名称以及我们希望它们在绘图中扮演的角色。与直接使用matplotlib时不同,没有必要将变量转换为可视化的参数(例如,用于每个类别的特定颜色或标记)。..._images / introduction_11_0.png 注意如何在散点图和线图上共享size和style参数,但它们会不同地影响两个可视化(更改标记区域和符号与线宽和虚线)。...第一种方法是使用其中一个备用seaborn主题来为您的情节提供不同的外观。设置不同的主题或调色板将使其对所有绘图生效: ?..._images / introduction_35_0.png 因为图级功能面向高效探索,使用它们来管理需要精确调整大小和组织的图形可能比在matplotlib中直接设置图形并使用相应的轴级seaborn
关系(五)利用python绘制连接散点图 连接散点图(Connected Scatterplot)简介 连接散点图(点线图)是折线图的一种,与散点图类似。...但添加了按数据点出现顺序的连线,以此来表示两个变量的顺序关系。因此连接散点图既能分析相关性,也可分析趋势性。...通过seaborn绘制多样化的连接散点图 seaborn主要利用lineplot绘制连接散点图,可以通过seaborn.lineplot[1]了解更多用法 import seaborn as sns import...plt.plot(df.Amanda, df.Ashley, '-', marker='o') # 为每个点添加年份(避免过度堆积,每隔三个点添加年份) for line in range(0, df.shape...的lineplot和matplotlib的plot快速绘制连接散点图,并通过修改参数或者辅以其他绘图知识自定义各种各样的连接散点图来适应相关使用场景。
(a) 输入图像通过散点图展示,每个图像对应一个点。 (b) 中间隐藏状态通过热图展示,每行是一个实例(主成分),每列是一个时间步。 (c) 输出概率通过PCP展示,每个实例对应一条折线。...如图2(a1)所示,用户通过套索选择来选择紫色和棕色簇之间的实例(例如,具有相似概率为数字“4”和“9”的图像)。图2(a2)显示了这些图像的细节,并使用户能够进一步研究单个图像。...图4(a1,a2)展示了使用 tSNE+散点图来可视化 DNN 的早期和后期层中所有数据实例的激活。这两种布局清楚地揭示了前向传播如何将数据实例分为不同的类。...跨层连接相同颜色的神经元形成相应图像的数据路径。作者还设计了一种新的可视化来有效地呈现这些数据路径及其随时间的演变模式(图5(b),底部)。...如图8(b)所示,每个方块代表一个数据实例,其垂直位置反映了相应类别(即此处的C3)的概率。
参考案例9和案例11 markers:标记 height:标量 作用:指定图的大小(图都是正方形的,所以只要指定height就行) {plot,diag,grid} _kws:dicts字典 作用...= sns.load_dataset("iris") """ 案例2: 为联合关系绘制散点图,为单变量绘制核密度估计图 字段变量名查看案例a, 由于值为数字的字段变量有4个,故绘制的关系图为4x4...= sns.load_dataset("iris") """ 案例3: 为联合关系绘制散点图,为单变量绘制核密度估计图 字段变量名查看案例a, 由于值为数字的字段变量有4个,故绘制的关系图为4x4...字段变量名查看案例a, 由于值为数字的字段变量有4个,故绘制的关系图为4x4 通过指定hue来对数据进行分组(效果通过颜色体现), 并指定markers来设置散点图中的点形 """ sns.pairplot...: 为联合关系绘制散点图,为单变量绘制直方图 通过设置kind=reg为散点图添加线性回归模型 字段变量名查看案例a, """ sns.pairplot(iris, kind="reg") plt.show
备注:你甚至可以理解为这一章都是在具体学习 factorplot() 函数,快速、直接、功能强大的绘图函数谁不爱? ?...分类散点图 显示分类变量级别中某些定量变量的值的一种简单方法使用 stripplot(),它会将分散图概括为其中一个变量是分类的: ? 在条纹图中,散点图通常将重叠。这使得很难看到数据的完整分布。...如果您的数据有一个 pandas 分类数据类型,那么类别的默认顺序可以在那里设置。...除了颜色之外,还可以使用不同的散点图标记来使黑色和白色的图像更好地绘制。 您还可以完全控制所用的颜色: ?...为了控制由上述功能制作的图形的大小和形状,您必须使用 matplotlib 命令自己设置图形。 当然,这也意味着这些图块可以和其他种类的图块一起在一个多面板的绘制中共存: ?
height, aspect:设置图像的大小和比例。 kind:指定绘图类型,如’strip’, ‘swarm’, ‘box’, 'violin’等。...formatter:设定文本标签的格式。 orient:设置图像的方向。 color:指定所有元素的颜色。 palette:指定颜色调色板。 hue_norm:指定颜色标准化。...height, aspect:设置图像的大小和比例。 kind:指定绘图类型,如’strip’, ‘swarm’, ‘box’, 'violin’等。...formatter:设定文本标签的格式。 orient:设置图像的方向。 color:指定所有元素的颜色。 palette:指定颜色调色板。 hue_norm:指定颜色标准化。...距离(以带宽大小为单位),以将密度扩展到极限数据点。设置为0将小提琴的范围限制在观察到的数据范围内(即,与ggplot中的trim=True具有相同的效果。
x、y 是坐标,marker 代表了标记的符号。比如“x”、“>”或者“o”。选择不同的 marker,呈现出来的符号样式也会不同,你可以自己试一下。...其中参数 x 是一维数组,bins 代表直方图中的箱子数量,kde 代表显示核密度估计,默认是 True,我们也可以把 kde 设置为 False,不进行显示。...其中参数 data 为 DataFrame 类型,x、y 是 data 中的变量。...其中参数 data 为 DataFrame 类型,x、y 是 data 中的变量。...最后我们在相应的位置上显示出属性名。这里需要用到中文,Matplotlib 对中文的显示不是很友好,因此我设置了中文的字体 font,这个需要在调用前进行定义。
()方法 首先,打开我们的jupyter notebook,新建一个notebook,名字叫data_visualization,导入相应的包 %matplotlib inline import seaborn...size是设置数据点的大小,多用于散点图,sizes指定了大小的范围。 style传入的是dataframe的一个列名,则会根据这一列的每个值进行分组,然后每个组使用不同的样式绘图。...图像美化 通过上面两节的内容,你可以画出一个符合需求的图片,但是如果想要美观一点,就需要多费点心思了 主题 使用set()和set_style()函数来设置主题,也就是背景 import seaborn...前面说过,matplotlib画图的机制是先确定一张纸(figure),再确定绘图区域(axe),上面的代码确定了一张长为8,宽为4的纸张,没有显式指明画图区域,则画图区域就是整张纸,所以画出来的图就是长为...8,宽为4的图像,注意,这里没有指定图要画在哪张纸上,这是因为matplotlib生成一张纸之后,也就指定了当前绘图将绘在这张纸上,会覆盖之前的figure 用plt.subplot(nrows,ncols
领取专属 10元无门槛券
手把手带您无忧上云