将JSON数据转换为Pandas DataFrame可以方便地进行数据分析和处理。在本文中,我们将探讨如何将JSON转换为Pandas DataFrame,并介绍相关的步骤和案例。...使用 Pandas 从 JSON 字符串创建 DataFrame除了从JSON文件中读取数据,我们还可以使用Pandas的DataFrame()函数从JSON字符串创建DataFrame。...以下是从JSON字符串创建DataFrame的步骤:导入所需的库:import pandas as pdimport json将JSON字符串解析为Python对象:data = json.loads(...结论在本文中,我们讨论了如何将JSON转换为Pandas DataFrame。...我们介绍了使用Pandas的read_json()函数从JSON文件读取数据,以及使用DataFrame()函数从JSON字符串创建DataFrame。
参考链接: Python | 使用Pandas.drop()从DataFrame删除行/列 将DataFrame的某列数据取出来,然后转化成字典: import pandas as pd data =...nanjing', 'changsha', 'wuhan'], 'sex': ['man', 'women', 'man', 'women', 'man', 'women'] } df = pd.DataFrame...需要去除,确定是保存那一列,否则会用后面的替换掉前面的 dff.set_index(keys='name', inplace=True) # 设置作为key的列为index dff = dff.T #取它的转置
我们还需要一个自定义 initializer 来从 JSON 字典中初始化 JSONValue。...Bool { self = .bool(value) } else if let json = any as?...[String: Any] { var dict: [String: JSONValue] = [:] for (key, value) in json
字符串转成json对象 var obj_groups = JSON.parse(groups_code); 例如: JSON字符串: var str1 = ‘{ “name”: “cxh”, “sex...JSON对象: //由JSON字符串转换为JSON对象 var obj = eval(‘(‘ + str + ‘)’); 或者 var obj = str.parseJSON(); //由JSON字符串转换为...JSON对象 或者 var obj = JSON.parse(str); //由JSON字符串转换为JSON对象 然后,就可以这样读取: Alert(obj.name); Alert(obj.sex);...二、可以使用toJSONString()或者全局方法JSON.stringify()将JSON对象转化为JSON字符串。...例如: var last=obj.toJSONString(); //将JSON对象转化为JSON字符 或者 var last=JSON.stringify(obj); //将JSON对象转化为JSON
将文档插入文件并定义名称 XLSX.utils.book_append_sheet(wb, ws, ws_name); // 执行下载 XLSX.writeFile(wb, filename); 使用xlse导出文件时,json...数据需要转换为数组,通常为二维数组,通常第一行为表头,如:['第一列','第二列','第三列'],然后就是使用xlse的步骤了,通常分为如下几个步骤: 1、调用XLSX.utils.book_new()...2、调用XLSX.utils.aoa_to_sheet(data),初始化excel文档,此时需要传入数据,数据为二维数组,第一行通常为表头。
如何将已有的 JSON 配置文件升级为 HCL2? 问题和解决 可以使用下面的命令来进行升级。...packer hcl2_upgrade -with-annotations druid-historical.json 在升级完成后,将会在当前 JSON 文件同一个文件夹中创建一个 druid-historical.json.pkr.hcl...WorkDir\FacilityConneX\Source-Code\Cloud\packer>packer hcl2_upgrade -with-annotations druid-historical.json...Successfully created druid-historical.json.pkr.hcl D:\WorkDir\FacilityConneX\Source-Code\Cloud\packer...https://www.ossez.com/t/packer-json-hcl2/13511
第二个参数是数据库连接驱动,所以从这个角度讲read_sql相当于对各种数据库读取方法的二次包装和集成; read_csv:其使用频率不亚于read_sql,而且有时考虑数据读取效率问题甚至常常会首先将数据从数据库中转储为...这一转储的过程目的有二:一是提高读取速度,二是降低数据读取过程中的运行内存占用(实测同样的数据转储为csv文件后再读取,内存占用会更低一些); read_excel:其实也是对xlrd库的二次封装,用来读取...Excel文件会更加方便,但日常使用不多; read_json:json文件本质上也属于结构化数据,所以也可将其读取为DataFrame类型,但如果嵌套层级差别较大的话,读取起来不是很合适; read_html...,用于从剪切板中读取结构化数据到DataFrame中。...其他也有read.json和read.orc等,但使用频率不高。
PHP如何将数据库查询结果输出为json格式 近期做接口的时候需要做到一个操作,将数据库查询结果输出为json格式方便程序调用。...可将其封装成专门将数据转换成json格式的接口 第一种方法 <?...php //此处前面省略连接数据库 //默认下方的$con为连接数据库的操作 //可将其封装成专门将数据转换成json格式的接口 //吃猫的鱼www.fish9.cn $sql = "SELECT...count;$i++){ unset($rows[$i]);//删除冗余数据 } array_push($jarr,$rows); } //此时的$jarr变量为数组...,但是还不是json格式 echo json_encode($jarr);//将数组进行json编码,并且进行输出 $arr=json_decode($str);//再进行json解码 mysqli_close
一.JSON数据转Excel表格数据JSON实例如下:{"name": "Alice", "age": 25, "city": "New York"}{"name": "Bob", "age": 30,...{}).get("city") data_list.append({"Name": name, "Age": age, "City": city})二.Excel表格数据转JSON...Excel 文件到 Pandas DataFramedf = pd.read_excel(excel_file)# 将 DataFrame 转换为 JSON 格式并保存到文件df.to_json(json_file...: • 读取 Excel 文件并将其加载到 Pandas 的 DataFrame 中。...2. df.to_json(): • 将 DataFrame 转为 JSON 格式。 常用参数 • orient="records": 每一行作为一个 JSON 对象。
字典是 Python 必用且常用的数据结构,本文梳理常用的字典操作,看这个就够了,涉及: 初始化 合并字典 字典推导式 Collections 标准库 字典转 JSON 字典转 Pandas 初始化 #...a = defaultdict(lambda: defaultdict(dict)) assert a[5][5] == {} 字典转 JSON 我们通常说的 JSON 就是指 JSON 字符串,它是一个字符串...import json a = dict(a=5, b=6) # 字典转 JSON 字符串 json_string = json.dumps(a) # json_string = '{"a": 5,..."b": 6}' # JSON 字符串转字典 assert a == json.loads(json_string) # 字典转 JSON 字符串保存在文件里 with open("dict.json...= json.load(f) 字典转 Pandas import pandas as pd # 字典转 pd.DataFrame df = pd.DataFrame([ { "a": 5,
2.1 导入工具包 # 导入工具包 import pandas as pd import json from urllib.request import urlopen, quote import requests...' ak = "自己申请的api" # 百度地图API, 需要自己申请 address = quote(address) # 由于本文地址变量为中文,为防止乱码,先用quote进行编码..._cells cells_lis = [[cell.text for cell in cells]] import pandas as pd import numpy as np datai = pd.DataFrame...data1 = pd.DataFrame(lis1,columns=['日期','品类','数量','价格','金额']) data1 7.4 批量读取 import pandas as pd import...版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...解决方法 可以用的方法简单列举如下: 对于创建DataFrame的情形 如果要创建一个DataFrame,可以直接通过dtype参数指定类型: df = pd.DataFrame(a, dtype='float...' : str}) 对于单列或者Series 下面是一个字符串Seriess的例子,它的dtype为object: ?...>>> s = pd.Series(['1', '2', '4.7', 'pandas', '10']) >>> s 0 1 1 2 2 4.7 3 pandas...默认情况下,它不能处理字母型的字符串’pandas’: >>> pd.to_numeric(s) # or pd.to_numeric(s, errors='raise') ValueError: Unable
Pandas处理JSON文件 本文介绍的如何使用Pandas来读取各种json格式的数据,以及对json数据的保存 读取json数据 使用的是pd.read_json函数,见官网:https://pandas.pydata.org.../docs/reference/api/pandas.read_json.html# pandas.read_json( path_or_buf=None, # 文件路径 orient=None...(data5, orient="values") df5 对生成的列名进行重新命名: to_json 将DataFrame数据保存成json格式的文件 DataFrame.to_json(path_or_buf.../docs/reference/api/pandas.DataFrame.to_json.html 1、默认保存 df.to_json("df_to_json_1.json", force_ascii=...("df_to_json_3.json", force_ascii=False, orient="index",indent=4) # index + 换行 显示结果中键为name信息: 4、改变index
我攥了很久才汇总出这个小技巧系列手册,现暂命名为:《Pandas数据分析小技巧系列手册1.0》 我会一篇5个小技巧陆续推送出来,如果可以欢迎星标我的公众号:Python与算法社区 小技巧1:如何使用map...小技巧2:使用 replace 和正则清洗数据 Pandas 的强项在于数据分析,自然就少不了数据清洗。 一个快速清洗数据的小技巧,在某列上使用 replace 方法和正则,快速完成值的清洗。...我们的目标:清洗掉 RMB,$ 符号,转化这一列为浮点型。...小技巧4:已知 year 和 dayofyear,怎么转 datetime?...day_of_year int_number date 0201935020193502019-12-16 1201936520193652019-12-31 22020120200012020-01-01 小技巧5:如何将分类中出现次数较少的值归为
CSV:最常用的数据格式 Pickle:用于序列化和反序列化Python对象结构 MessagePack:类似于json,但是更小更块 HDF5:一种常见的跨平台数据储存文件 Feather:一个快速、...分类特征以基数为C的uuid4随机字符串生成,其中2 转储到CSV中,然后读回内存以获取平均指标。并且针对具有相同行数的20个随机生成的数据集测试了每种二进制格式。...同时使用两种方法进行对比: 1.将生成的分类变量保留为字符串 2.在执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式的平均I/O...这次parquet显示出非常好的结果,考虑到这种格式是为有效存储大量数据而开发的,也是理所当然 ?
我们可以看到,在常规的字典转化为Dataframe时,键转化为了列索引,行索引默认为range(n),其中n为数据长度。我们亦可在进行转化的时候,通过设定参数index的值指定行索引。...').T #使用 pd.DataFrame.from_dict,再转置 Out[9]: a b 0 1 2 1.2.字典组成的列表 对于由字典组成的列表,同样可以简单使用pd.Dataframe...,第二个元素为二级索引,以此类推。...数据与Dataframe类型互相转化 方法:**pandas.read_json(*args, kwargs)和to_json(orient=None)一般来说,传入2个参数:data和orient !...0 1 0 1 0.50 1 2 0.75 4.多层结构字典转化为Dataframe 方法:pandas.json_normalize()对于普通的多级字典如下: In [38]
Python与算法社区 第443篇原创,干货满满 值得星标 你好,我是 zhenguo 我攥了很久才汇总出这个小技巧系列手册,现暂命名为:《Pandas数据分析小技巧系列手册1.0》 我会一篇5个小技巧陆续推送出来...小技巧2:使用 replace 和正则清洗数据 Pandas 的强项在于数据分析,自然就少不了数据清洗。 一个快速清洗数据的小技巧,在某列上使用 replace 方法和正则,快速完成值的清洗。...我们的目标:清洗掉 RMB,$ 符号,转化这一列为浮点型。...小技巧4:已知 year 和 dayofyear,怎么转 datetime?...day_of_year int_number date 0201935020193502019-12-16 1201936520193652019-12-31 22020120200012020-01-01 小技巧5:如何将分类中出现次数较少的值归为
pandas数组结构有一维 Series 和二维 DataFrame 。...以 obj 对象为例,判断是否有缺失值: pd.notnull(obj) pd.isnull(obj) 8.2.5、pandas DataFrame 类型 DataFrame 是一个表格型的数据结构,它含有一组有序的列...,每列可以是不用的类型,数值、字符串、布尔值都可以 DataFrame 本身也有行索引,列索引,字典转 DataFrame 再转置表格才一致。...和数据源为字典的DF对象很像,转 DataFrame 的格式数据 除了前面提到的(8.2.2),现在又多了 CSV文件。...pandas 还可以读取 json,db 文件 df = pd.read_json('data.json') import sqlite3 conn = sqlite3.connect('database.db
多层数据 简单查询:Json文件的上层为销售员,下层为订单,查询出符合条件的所有订单。...相反,DataFrame适合表达二维数据,但同一列的数据类型不可变,不是真正的泛型,无法表达一般的多层Json。...DataFrame不擅长表达多层Json,需要用json_normalize函数将多层Json转为二维DataFrame,才能进行后续计算,这说明Pandas的语言整体性不够好。...与Json的normalize函数不同,Pandas没有为XML提供方便的标准化函数,官方推荐用XML计算语言把多层XML计算为二维XML,常用的XML计算语言有XSLT和XPath。...loan_term_pay = pd.concat(loan_term_list,ignore_index=True) 上面代码用两层循环作为主体结构,先循环每项贷款,再循环生成该项贷款的每一期,然后将各期明细转置为
领取专属 10元无门槛券
手把手带您无忧上云