首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

范数详解-torch.linalg.norm计算实例

范数是一种数学概念,可以将向量或矩阵映射到非负实数上,通常被用来衡量向量或矩阵的大小或距离。在机器学习和数值分析领域中,范数是一种重要的工具,常用于正则化、优化、降维等任务中。...库中的 numpy.linalg.norm 或 scipy.linalg.norm 函数。...二范数可以说是出场率最高的了,比如在最小二乘法中,还有如线性代数中的向量空间、矩阵分解等。...L1 范数可以被用于衡量向量或矩阵中各个元素的绝对大小,具有一些特殊的性质,例如对于稀疏向量,它的 L1 范数更容易被最小化,因为它倾向于将向量的一些元素设为 0。...例如,在稀疏信号处理中,可以使用 L1 范数来促进信号的稀疏性;在机器学习中,可以使用 L1 范数作为正则化项来防止过拟合。

1.9K30

深度学习笔记 基础数学知识

向量的叉乘,也叫向量的外积、向量积。叉乘的运算结果是一个向量而不是一个标量。 对应项相乘,顾名思义,就是两个向量对应的位置相乘,得到的结果还是原来的形状。...矩阵及其运算 矩阵一般是一个 m 行 n 列的矩形阵列,一般的表达方式如下图所示: ? 矩阵中每个元素都有 m 和 n 两个下标,分别代表行和列的位置,所以矩阵也可以通过索引直接定位元素的值。...设 a 为 m 行 p 列的矩阵,b 为 p 行 n 列的矩阵,相乘的结果为一个 m 行 n 列的新矩阵,其中第 i 行第 j 列(1≤i≤m,1≤j≤n)的元素为: ? ?...L1 范数指的是向量中所有元素的绝对值之和,它是一种距离的表示(曼哈顿距离),也被称为稀疏规则算子,公式如下: ? L0 范数和 L1 范数都能实现权值稀疏。...L2 也代表一种距离,即欧式距离,L0 和 L1 可以起到权值稀疏的作用,L2 也有它的作用,那就是防止过拟合。 L2 是如何解决过拟合的呢?

83110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    SciPy 稀疏矩阵(6):CSC

    我们完全可以把稀疏矩阵看成是有序稀疏列向量组,然后模仿 LIL 格式或者是 CSR 格式对列向量组中的每一个列向量进行压缩存储。...” PART. 01 SciPy CSC 格式的稀疏矩阵 SciPy CSC 格式的稀疏矩阵和 SciPy CSR 格式的稀疏矩阵差不多,属性名都是一样的,唯一不一样的地方就是 SciPy CSC 格式的稀疏矩阵把稀疏矩阵看成有序稀疏列向量组而...SciPy CSR 格式的稀疏矩阵把稀疏矩阵看成有序稀疏行向量组。...实例化 SciPy CSC 格式的稀疏矩阵类的定义位于 scipy.sparse 包中的 csc_matrix 类,对其进行实例化就能获取一个 SciPy CSC 格式的稀疏矩阵的实例。...如何进行重复相加等化简操作只需要调用 sum_duplicates() 方法,调用该方法不仅会把重复的行索引的对应值相加,还会把同一列的行索引按从小到大的顺序排好。

    17310

    SciPy 稀疏矩阵(5):CSR

    (对应位置相乘再相加)得到结果向量中的第 1 个数,然后首先有序的行向量组中第 2 个行向量和右乘的向量做内积运算得到结果向量中的第 2 个数,以此类推。...我们显然可以发现 LIL 格式的稀疏矩阵进行该操作效率非常高,因为不同于 COO 格式的稀疏矩阵外加上 DOK 格式的稀疏矩阵获取某一行数据需要扫描整个稀疏矩阵的非零元素信息,LIL 通过把稀疏矩阵看成是有序的稀疏行向量组并对这些稀疏行向量进行压缩存储...因此,获取 LIL 格式的稀疏矩阵中的某一行(第 i 行)的非零元素的列索引和元素值只需要分别访问 rows 属性(数组)第 i 个元素(动态数组)和 data 属性(数组)的第 i 个元素(动态数组)...如图所示,我们可以发现 LIL 格式的稀疏矩阵虽然可以快速获取某一行的信息,但是它任意相邻两行的非零元素的列索引以及对应元素值并不是存储在一段连续的内存空间中,换句话说就是当缓存中的第 i 行非零元素的信息即将用完的时候...因此,我们需要自己实现两种格式的稀疏矩阵的矩阵乘向量操作,这一点也不难,只需要继承 SciPy 中对应格式的稀疏矩阵类并重写 _mul_vector 方法就可以了,代码如下所示。

    16510

    python的高级数组之稀疏矩阵

    CSR、CSC是用于矩阵-矩阵和矩阵-向量运算的有效格式,LIL格式用于生成和更改稀疏矩阵。Python不能自动创建稀疏矩阵,所以要用scipy中特殊的命令来得到稀疏矩阵。...CSR使用了三个数组,分别为数值、行偏移(表示某一行的第一个元素在数值里面的起始偏移位置,在行偏移的最后补上矩阵总的元素个数)、列号。...(表示某一行的第一个元素在数值里面的起始偏移位置,在行偏移的最后补上矩阵总的元素个数) 在Python中使用: import numpy as np from scipy.sparse import csr_matrix...链表稀疏格式在列表数据中以行方式存储非零元素, 列表data: data[k]是行k中的非零元素的列表。如果该行中的所有元素都为0,则它包含一个空列表。...: Numpy包的命令eye、identity、diag和rand都有其对应的稀疏矩阵,这些命令需要额外的参数来指定所得矩阵的稀疏矩阵格式。

    2.9K10

    深度学习500问——Chapter01:数学基础

    向量的p范数: 矩阵的范数 定义一个矩阵: 。任意矩阵定义为: ,其元素为 。 矩阵的范数定义为: 当向量取不同范数时,相应得到了不同的矩阵范数。...矩阵的无穷范数(行范数):矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大),上述矩阵 的行范数先得到 ,再取最大的最终结果是:16。...矩阵的L0范数:矩阵的非0元素的个数,通常用它来表示稀疏,L0范数越小0越苏越多,也就越稀疏,上述矩阵 的最终结果就是:6。...矩阵的L1范数:矩阵中的每个元素的绝对值之和,它是L0范数的最优凸近似,因此它也可以表示稀疏,上述矩阵 的最终结果就是:22。...矩阵的L21范数:矩阵先以每一列为单位,求每一列的F范数(也可认为是向量的2范数),然后再将得到的结果求L1范数(也可认为是向量的1范数),很容易看出它是介于L1和L2之间的一种范数,上述矩阵 的最终结果就是

    23410

    SciPy 稀疏矩阵(4):LIL(上)

    矩阵是由若干行和若干列组成的二维数组,而向量组则是由若干向量组成的集合。矩阵的每一行可以看作是一个向量,而向量组中的每个向量也可以看作是一个行向量。此外,矩阵的秩与向量组的秩也有着密切的联系。...矩阵是有序向量组:矩阵是数学中的基本概念之一,它是一个由数字组成的矩形阵列。在形式上,矩阵是由若干行和若干列组成的,每一行和每一列都有一定的顺序。这个顺序就决定了矩阵是一个有序向量组。...SciPy LIL 格式的稀疏矩阵 在开始 SciPy LIL 格式的稀疏矩阵之前我花了一些篇幅讲解稀疏向量的二元组存储策略外加上基于稀疏向量的稀疏矩阵的存储策略,这主要是因为 SciPy LIL 格式的稀疏矩阵用的存储策略就是基于稀疏向量的稀疏矩阵的存储策略的第...实例化 SciPy LIL 格式的稀疏矩阵类的定义位于 scipy.sparse 包中的 lil_matrix 类,对其进行实例化就能获取一个 SciPy LIL 格式的稀疏矩阵的实例。...因此,这样的操作完全可以看成是有序顺序表中的一些操作,对应关系如下表所示: LIL 格式的稀疏矩阵的操作 有序顺序表的操作 时间复杂度 按照行列索引查找对应值 有序顺序表的二分查找 O(log₂n) 按照行列索引修改对应值

    24010

    Matlab矩阵基本操作(定义,运算)

    此外,还可利用一般向量和end运算符来表示矩阵下标,从而获得子矩阵。end表示某一维的末尾元素下标。 利用空矩阵删除矩阵的元素: 在MATLAB中,定义[]为空矩阵。...8、向量和矩阵的范数 矩阵或向量的范数用来度量矩阵或向量在某种意义下的长度。范数有多种方法定义,其定义不同,范数值也就不同。...(1) 向量的3种常用范数及其计算函数 在MATLAB中,求向量范数的函数为: a、norm(V)或norm(V,2):计算向量V的2-范数; b、norm(V,1):计算向量V的1-范数; c、...S是要建立的稀疏矩阵的非0元素,u(i)、v(i)分别是S(i)的行和列下标,该函数建立一个max(u)行、max(v)列并以S为稀疏元素的稀疏矩阵。此外,还有一些和稀疏矩阵操作有关的函数。...full(A):返回和稀疏存储矩阵A对应的完全存储方式矩阵。

    2.6K20

    Python数学建模算法与应用 - 常用Python命令及程序注解

    元素计算:对于结果矩阵 C 的第 i 行第 j 列元素 cij,可以通过计算矩阵 A 的第 i 行与矩阵 B 的第 j 列的内积得到。内积的计算方式是将两个向量对应位置的元素相乘,然后将乘积相加。...这种视角下,矩阵乘法的运算可以理解为将行向量与列向量的对应元素相乘,并将结果相加,得到一个标量值。...最后,代码打印了行向量2范数、列向量2范数和矩阵2范数的结果。 范数是一个衡量向量或矩阵大小的指标。2范数(也称为欧几里德范数)是指向量或矩阵元素的平方和的平方根。...在代码中,通过指定 axis 参数来计算行向量或列向量的范数。当 axis=1 时,计算行向量的范数;当 axis=0 时,计算列向量的范数。如果不指定 axis 参数,则默认计算整个矩阵的范数。...以上只是Scipy库中一些常用模块的简介,Scipy还包含了其他一些模块和子模块,如稀疏矩阵运算、信号处理、优化算法、图像处理等。

    1.5K30

    matlab 稀疏矩阵 乘法,Matlab 矩阵运算

    此外,还可利用一般向量和end运算符来表示矩阵下标,从而获得子矩阵。end表示某一 维的末尾元素下标。 利用空矩阵删除矩阵的元素: 在MATLAB中,定义[]为空矩阵。...8、向量和矩阵的范数 矩阵或向量的范数用来度量矩阵或向量在某种意义下的长度。范数有多种方法定义,其定义不同,范数值也就不同。...(1) 向量的3种常用范数及其计算函数 在MATLAB中,求向量范数的函数为: a、norm(V)或norm(V,2):计算向量V的2-范数; b、norm(V,1):计算向量V的1-范数; c、norm...S是要建立的稀疏矩阵的非0元素,u(i)、v(i)分别是S(i)的行和列下标,该函数 建立一个max(u)行、max(v)列并以S为稀疏元素的稀疏矩阵。 此外,还有一些和稀疏矩阵操作有关的函数。...full(A):返回和稀疏存储矩阵A对应的完全存储方式矩阵。

    3K30

    ECCV 2020 | 清华提出CSG:训练可解释的卷积神经网络

    如图2所示,理想的类特定卷积核应该只对应一个类别,为了明确定义,使用矩阵来表示卷积核和类别的相关性,矩阵元素代表卷积核和类别的相关性。对于输入样本,取矩阵的行作为控制门,将不相关的卷积核输出置为零。...为了找到准确描述类别与卷积核关系的控制门矩阵,需要在二值空间中搜索使得CSG路径有最好的分类效果,即优化问题,是one-hot编码,用来验证网络中分化的卷积核的性能,将加入到训练损失中作为正则化项,得到整体网络的优化目标...保证准确率,引导的稀疏性。但公式1其实是很难优化的,首先很难保证每个卷积核是绝对地只对应一个类别,通常都是多类别共享特征,其次,非连续空间的二值向量很难通过梯度下降优化。...另外,加入正则项来引导的尽量稀疏,当L1向量范数小于上界时,则不进行惩罚。的常规设计是,可以是各种范数,包括L1、L2和smooth-L1范数。的设置需满足,因为,共有K个。...为了展示卷积核与类别间的相关性,对控制门矩阵和互信息矩阵进行可视化: 图a表明CSG训练能得到稀疏的CSG矩阵,每个卷积核仅对应一个或少量类别。

    1.3K20

    向量和矩阵的各种范数比较(1范数、2范数、无穷范数等等)

    在刚入门机器学习中的低秩,稀疏模型时,被各种范数搅得一团糟,严重延缓了学习进度,经过一段时间的学习,现在将其完整的总结一下,希望遇到同样麻烦的同学能有所帮助。。。...,MATLAB代码实现为:norm(A,2); 2.3 矩阵的无穷范数 矩阵的1范数即:矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大),上述矩阵A的1范数先得到[6;16],再取最大的最终结果就是...代码实现为:sum(svd(A)) 2.5 矩阵的L0范数 矩阵的L0范数即:矩阵的非0元素的个数,通常用它来表示稀疏,L0范数越小0元素越多,也就越稀疏,上述矩阵A最终结果就是:6 2.6 矩阵的L1...范数 矩阵的L1范数即:矩阵中的每个元素绝对值之和,它是L0范数的最优凸近似,因此它也可以表示稀疏,上述矩阵A最终结果就是:22,MATLAB代码实现为:sum(sum(abs(A))) 2.7 矩阵的...(A,‘fro’) 2.8 矩阵的L21范数 矩阵的L21范数即:矩阵先以每一列为单位,求每一列的F范数(也可认为是向量的2范数),然后再将得到的结果求L1范数(也可认为是向量的1范数),很容易看出它是介于

    1.8K10

    sklearn-preprocessing使用

    例如,对于两个TF-IDF向量的l2-norm进行点积,就可以得到这两个向量的余弦相似性。 函数normalize 提供了一个快速有简单的方式在一个单向量上来实现这正则化的功能。...([[-0.70710678, 0.70710678, 0. ]]) ''' normalize和Normalizer都既可以用在密集数组也可以用在稀疏矩阵(scipy.sparse)...中 对于稀疏的输入数据,它会被转变成维亚索的稀疏行表征(具体请见scipy.sparse.csr_matrix) 二值化–特征的二值化 特征的二值化是指将数值型的特征数据转换成布尔类型的值。...[[ 0., 0., 1.], [ 1., 0., 0.], [ 0., 0., 0.]]) ''' binarize and Binarizer都可以用在密集向量和稀疏矩阵上..., 6. ]]) ''' Imputer类同样也可以支持稀疏矩阵,以下例子将0作为了缺失值,为其补上均值 import scipy.sparse as sp # 创建一个稀疏矩阵

    1.8K52

    向量和矩阵的各种范数比较(1范数、2范数、无穷范数等等

    :向量的所有元素的绝对值中最大的:上述向量a的负无穷范数结果就是:10,MATLAB代码实现为:norm(a,inf); 二、矩阵的范数 首先我们将介绍数学中矩阵的范数的情况,也就是无论哪个学科都统一的一种规定...A的2范数得到的最终结果是:10.0623,MATLAB代码实现为:norm(A,2); 2.3 矩阵的无穷范数 矩阵的1范数即:矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大),上述矩阵...A的1范数先得到[6;16],再取最大的最终结果就是:16,MATLAB代码实现为:norm(A,inf); 接下来我们要介绍机器学习的低秩,稀疏等一些地方用到的范数,一般有核范数,L0范数,L1范数(...范数 矩阵的L1范数即:矩阵中的每个元素绝对值之和,它是L0范数的最优凸近似,因此它也可以表示稀疏,上述矩阵A最终结果就是:22,MATLAB代码实现为:sum(sum(abs(A))) 2.7 矩阵的...(A,‘fro’) 2.8 矩阵的L21范数 矩阵的L21范数即:矩阵先以每一列为单位,求每一列的F范数(也可认为是向量的2范数),然后再将得到的结果求L1范数(也可认为是向量的1范数),很容易看出它是介于

    7.5K30

    机器学习基础与实践(二)——数据转换

    Normalizing(正则化):通常是指除以向量的范数。例如:将一个向量的欧氏长度等价于1 。...scalers接受压缩的稀疏行(Compressed Sparse Rows)和压缩的稀疏列(Compressed Sparse Columns)的格式(具体参考scipy.sparse.csr_matrix...注:稀疏数据输入: normalize 和 Normalizer 既接受稠密数据(dense array-like),也接受稀疏矩阵(from scipy.sparse)作为输入 稀疏数据需要转换成压缩的稀疏行...注:稀疏数据输入: binarize 和 Binarizer 既接受稠密数据(dense array-like),也接受稀疏矩阵(from scipy.sparse)作为输入 稀疏数据需要转换成压缩的稀疏行...在稀疏矩阵中,缺失值被编码为0存储为矩阵中,这种格式是适合于缺失值比非缺失值多得多的情况。

    1.6K60

    CSG:清华大学提出通过分化类特定卷积核来训练可解释的卷积网络 | ECCV 2020 Oral

    论文提出类特定控制门CSG来引导网络学习类特定的卷积核,并且加入正则化方法来稀疏化CSG矩阵,进一步保证类特定。...对于输入样本$(x,y)\in D$,取矩阵$G$的行$G_y \in 0, 1^K$作为控制门,将不相关的卷积核输出置为零。...另外,加入正则项$d(||G||_1, g)$来引导$G$的尽量稀疏,当L1向量范数$||G||_1$小于上界$g$时,则不进行惩罚。...Visualizing the Gate/MI Matrices [1240]   为了展示卷积核与类别间的相关性,对控制门矩阵$G$和互信息矩阵$M$进行可视化: 图a表明CSG训练能得到稀疏的CSG...Conclustion ***   论文提出类特定控制门CSG来引导网络学习类特定的卷积核,并且加入正则化方法来稀疏化CSG矩阵,进一步保证类特定。

    65530

    利用 Numpy 进行矩阵相关运算

    范数等 linalg.norm(x[, ord, axis, keepdims]) 向量或者矩阵的范数 linalg.det(a) 行列式的值 linalg.matrix_rank(M[, tol,...m次,行方向重复n次 matlib.rand(*args) 填充随机数的矩阵 matlib.randn(*args) 填充数符合标准正态分布的矩阵 3.案例讲解 3.1 numpy.linalg 模块...范数 默认是二阶范数 ? 行列式的值 可以单独求解单个矩阵的行列式的值,也可以多个矩阵同时求解行列式的值 ? 矩阵的秩 同样支持多个矩阵同时求解矩阵的秩 ? 矩阵的迹 ?...最小二乘 使用第十六讲习题课的例子,返回值中含有多个值,系数矩阵在返回值的第一个数组中 ? 逆 使用第三讲课程内容中的例子 ?...三个参数分别对应行数,列数和相对位置 ? 单位阵 ? 随机数矩阵 ? 随机数符合标准正态分布的矩阵 ?

    2.2K30

    开发者必读:计算机科学中的线性代数

    即 A 的所有列(或行)向量都是两两正交或互成法向量。...无穷范数,取矩阵行加和绝对值的最大值: ? 2-范数, ? 这一系列的范数被称为「归纳(induced)」,因为它们是通过不取决于 A 和 p 的非零向量 x 而实现的。...因此,一般存在一个单位范数向量(p-范数中的单位范数)x 令||A||p = ||Ax||p。归纳矩阵 p-范数遵循以下 submultiplicativity 法则: ?...同样,矩阵 2-范数并不会受到矩阵 pre(post)- multiplication 操作的影响,其中它的列(或行)为正交向量:||UAV^T||2 = ||A||2,其中 U 和 V 为对应维度的正交矩阵...A 的非零奇异值个数等于 A 的秩。由于正交不变性,我们得到: ? 其中 P 和 Q 是对应维度上的正交矩阵(P^TP = I 且 Q^TQ = I)。或者说,PAQ 的奇异值与 A 的奇异值相同。

    1.3K70

    线性代数 - 1 - 基础知识

    无穷范数 image.png 为向量中绝对值最大的元素的值。...(行模): 矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大) image.png L0范数: 矩阵的非0元素的个数,通常用它来表示稀疏,L0范数越小0元素越多,也就越稀疏...L1范数: 矩阵中的每个元素绝对值之和,它是L0范数的最优凸近似,因此它也可以近似表示稀疏 F范数: 矩阵的各个元素平方之和再开平方根,它通常也叫做矩阵的L2范数,它的优点在它是一个凸函数,可以求导求解...乘,其结果等于kA 行列式A等于其转置行列式AT(AT的第i行为A的第i列) 行列式A中两行(或列)互换,其结果等于-A 把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是...向量( m维向量)对向量 ( n维向量) 的偏导数(雅可比矩阵,行优先)如果为列优先,则为矩阵的转置。

    2.2K20

    IEEE Trans 2006 使用K-SVD构造超完备字典以进行稀疏表示(稀疏分解)

    K-SVD算法总体来说可以分成两步,首先给定一个初始字典,对信号进行稀疏表示,得到系数矩阵。第二步根据得到的系数矩阵和观测向量来不断更新字典。...存在字典D,对于每一个yk,通过求解公式(1)中的问题,我们能得到它的稀疏表示xk。 A K-means泛化 稀疏表示和聚类(向量量化)有相似之处。在聚类方法中,我们要找到一组描述性向量 ?...第二个假设针对隐藏变量x,我们通过公式(5)来计算信号中的某一元素的似然函数: ? 结合公式(3)我们有: ? 假定表示向量X的元素是零均值的独立同分布,通常是柯西或者拉普拉斯分布。...在稀疏表示中我们将代码字成为字典元素。对应的,系数向量也不止一个,并且不要求一定为1,可以有不同的值。...假定X和D都是固定的,当前只对一列进行更新,设为dk,相应的系数为XTK (即为矩阵X的第k行,不同于X的第k列xk),则我们将式(19)中的惩罚项重写为 ?

    2.7K91
    领券