首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

基于分解和重组的分子图的生成方法

今天为大家介绍的是来自Masatsugu Yamada 和 Mahito Sugiyama的一篇关于分子生成的论文。在药物发现和材料设计中,设计具有所需化学性质的分子结构是一项重要任务。然而,由于候选分子空间的组合爆炸,找到具有优化所需性质的分子仍然是一项具有挑战性的任务。在这里,作者提出了一种全新的基于分解和重组的方法,该方法不包括任何在隐藏空间中的优化,并且生成过程具有高度的可解释性。该方法是一个两步过程:在第一步的分解阶段,对分子数据库应用频繁子图挖掘,以收集较小规模的子图作为分子的构建模块。在第二步的重组阶段,通过强化学习引导搜索理想的构建模块,并将它们组合起来生成新的分子。实验证明,作者方法不仅可以在惩罚性log P和药物相似度这两个标准指标下找到更好的分子,还可以生成显示有效中间分子的药物分子。

01

NeurIPS| 利用条件图逻辑网络进行逆合成预测

今天给大家介绍的是Google Research和蚂蚁金服等团队在NeurlPS发表的一篇名为“Retrosynthesis Prediction withConditional Graph Logic Network”的文章。逆合成分析属于有机化学中的基本问题,在机器学习领域也引起广泛关注。文章中,作者把逆合成的任务描述为“在确定的分子空间中寻找可以用来合成产物分子的反应物分子集合”这一问题。大多数现有的方法依赖于子图匹配规则的基于模板的模型,但是化学反应是否可以进行并不是严格由决策规则定义的。在文章中,作者提出了一种使用条件图逻辑网络来完成这项任务的新方法,它可以学习何时应该应用反应模板中的规则,隐式地考虑所产生的反应是否具有化学可行性和策略性。作者还提出了一种有效的分层抽样来减少计算成本。在基准数据集上,与当时最先进的方法相比,作者的模型实现了8.1%的显著改进,同时还提供了对预测的解释。

02

Nat. Mach. Intell. | MolCLR:一个用于分子表征学习的自监督框架

今天介绍的是卡内基梅隆大学化学工程系的Amir Barati Farimani 教授最新发表在 Nature Machine Intelligence上的文章 ”Molecular contrastive learning of representations via graph neural networks”. 该文提出一种自监督的图神经网络框架MolCLR,利用大量无监督的标签进行自监督学习,有效缓解了因为数据标记有限而阻碍将分子机器学习推广到巨大的化学空间的难题。同时,本文提出了三种全新的分子图的增强方法:原子屏蔽、键删除以及子图删除,所提的分子图增强方法保证了增强时同一分子的一致性最大化以及不同分子一致性的最小化。实验表明,MolCLR 大大改善了 GNN 在各种分子特性基准上的表现。

04

基于三维模型的目标识别和分割在杂乱的场景中的应用

在杂波和遮挡情况下,对自由形式物体的识别及分割是一项具有挑战性的任务。本文提出了一种新的基于三维模型的算法,该算法可以有效地执行该任务,对象的三维模型是从其多个无序范围图像离线自动构建的,这些视图被转换为多维,用张量表示,通过使用基于哈希表的投票方案将视图的张量与其余视图的张量匹配,这些视图之间自动建立对应关系,形成一个相对转换图,用于将视图集成到无缝3D模型之前注册视图,该模型及其张量表示构成了模型库。在在线识别过程中,通过投票场景中的张量与库中的张量同时匹配,对于得票最多的模型张量并计算相似性度量,进而被转换为场景,如果它与场景中的对象精确对齐,则该对象被声明为识别和分割。这个过程被重复,直到场景完全分割。与自旋图像的比较表明,本文算法在识别率和效率方面都是优越的。

01

模电知识总结(一)

半导体的物理基础:1.掺杂特性 2.热敏特性 3.光敏特性 2. 本征半导体:原子排列整齐、晶格无缺陷、纯净的半导体(在热力学温度零度,由于共价键的束缚,价电子能量无法挣脱共价键的束缚,因此晶体中没有自由电子,此时半导体相当于绝缘体。)本征半导体的导电能力很差。(载流子浓度与原子密度相比很少) 本征激发(热激发):由热能产生电子-空穴对的现象。随着温度升高,载流子浓度(指数)增加,其电阻率的温度系数是负的,这是半导体导电与金属导电的根本不同点。(相同温度下,锗的载流子浓度大于硅。) 3. N型半导体:在本征半导体中掺入五价元素。 P型半导体:在本征半导体中掺入三价元素。 杂质半导体中存在自由电子、空穴和杂质离子三种带电粒子,其中,自由电子和空穴是载流子,杂质离子不能移动不是载流子。多子浓度由杂志决定,少子浓度则由本征激发决定。 掺杂半导体处于一定温度平衡状态时,自由电子浓度N0和空穴浓度P0(俊臣为平衡载流子浓度)满足以下关系式 P0*N0=Ni^2 (Ni是该温度下本征载流子浓度。) 扩散电流和漂移电流(取决于少子浓度和工作温度,与外加电压的大小基本无关。)。

04
领券