首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Apache CarbonData 简介

它采用多级索引技术来确保更快的数据检索,即使是从巨大的数据集中也是如此。多级索引有助于减少对数据块的不必要扫描,从而显着加快数据加载和查询处理速度。...全局字典编码通过用整数代理键替换高基数字符串值来减小数据的大小。这会减少磁盘 IO 操作,从而加速查询执行。...列式存储格式: Apache CarbonData 中的数据以列式格式存储,这意味着数据集中每一列的值存储在一起,而不是逐行存储。这会带来更好的压缩效果,因为列中的值通常相似。...它还允许更有效地执行仅需要表中列的子集的查询。 索引: Apache CarbonData 使用多级索引策略来加速数据检索过程。...与Spark集成: 较旧的数据格式不提供与 Apache Spark 的深度集成,而这是 CarbonData 的一个关键功能。这种集成增强了 Spark 的计算能力,从而加快了数据处理速度。

62920

RDD操作—— 行动(Action)操作

操作 说明 count() 返回数据集中的元素个数 collect() 以数组的形式返回数据集中的所有元素 first() 返回数据集中的第一个元素 take(n) 以数组的形式返回数据集中的前n个元素...reduce(func) 通过函数func(输入两个参数并返回一个值)聚合数据集中的元素 foreach(func) 将数据集中的每个元素传递到函数func中运行 惰性机制 在当前的spark目录下面创建...最后,等到lines集合遍历结束后,就会得到一个结果集,这个结果集中包含了所有包含“Spark”的行。最后,对这个结果集调用count(),这是一个行动操作,会计算出结果集中的元素个数。...persist()的圆括号中包含的是持久化级别参数, persist(MEMORY_ONLY)表示将RDD作为反序列化的对象存储于JVM中,如果内存不足,就要按照LRU原则替换缓存中的内容。...对于不同的Spark部署模式而言(本地模式、Standalone模式、YARN模式、Mesos模式),都可以通过设置spark.default.parallelism这个参数的值,来配置默认的分区数目,

1.5K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark算子官方文档整理收录大全持续更新【Update2023624】

    (6) sample(withReplacement, fraction, seed) 其有3个参数,使用给定的随机数生成器种子,在有或没有替换的情况下对数据的一小部分进行采样。...(3) count() 返回数据集中元素的数量。 (4) first() first()函数用于返回数据集的第一个元素,类似于take(1)操作。它返回数据集中的第一个元素作为单个元素的结果。...如果数据集为空,则会抛出异常。first()常用于需要获取数据集中的第一个元素的情况,而不需要获取整个数据集的内容。...转换算子是惰性执行的,而行动算子是立即执行的。通过理解这些区别,可以更好地使用和组合转换算子和行动算子来构建Spark应用程序。...四、惰性(Lazy Evaluation)和立即(Eager Evaluation)如何体现 在Spark中,惰性(Lazy Evaluation)和立即(Eager Evaluation)是指计算操作的时机和方式

    14810

    「Hudi系列」Hudi查询&写入&常见问题汇总

    } hudi-spark模块提供了DataSource API,这是一种从Hudi数据集中提取数据并通过Spark处理数据的更优雅的方法。...如何对存储在Hudi中的数据建模 在将数据写入Hudi时,可以像在键-值存储上那样对记录进行建模:指定键字段(对于单个分区/整个数据集是唯一的),分区字段(表示要放置键的分区)和preCombine/combine...Hudi如何在数据集中实际存储数据 从更高层次上讲,Hudi基于MVCC设计,将数据写入parquet/基本文件以及包含对基本文件所做更改的日志文件的不同版本。...如何查询刚写入的Hudi数据集 除非启用了Hive同步,否则与其他任何源一样,通过上述方法写入Hudi的数据集可以简单地通过Spark数据源进行查询。...如何删除数据集中的记录 GDPR使删除成为数据管理工具箱中的必备工具。Hudi支持软删除和硬删除。 17.

    6.6K42

    ApacheHudi使用问题汇总(一)

    如何查询刚写入的Hudi数据集 除非启用了Hive同步,否则与其他任何源一样,通过上述方法写入Hudi的数据集可以简单地通过Spark数据源进行查询。...默认情况下会选择最大值的记录(由 compareTo决定)。 对于 insert或 bulk_insert操作,不执行 preCombine。因此,如果你的输入包含重复项,则数据集也将包含重复项。...如何删除数据集中的记录 GDPR使删除成为数据管理工具箱中的必备工具。Hudi支持软删除和硬删除。有关如何实际执行它们,请参见此处。 7....如何将Hudi配置传递给Spark作业 这里涵盖了数据源和Hudi写入客户端(deltastreamer和数据源都会内部调用)的配置项。...HoodieGlobalBloomIndex:默认索引仅在单个分区内强制执行键的唯一性,即要求用户知道存储给定记录键的分区。这可以帮助非常大的数据集很好地建立索引。

    1.7K20

    Apache Hudi 架构原理与最佳实践

    它还允许用户仅摄取更改的数据,从而提高查询效率。它可以像任何作业一样进一步水平扩展,并将数据集直接存储在HDFS上。 2. Hudi如何工作?...时间轴上的操作类型包括 提交(commit),一次提交表示将一批记录原子写入数据集中的过程。单调递增的时间戳,提交表示写操作的开始。...实际使用的格式是可插入的,但要求具有以下特征–读优化的列存储格式(ROFormat),默认值为Apache Parquet;写优化的基于行的存储格式(WOFormat),默认值为Apache Avro。...此过程不用执行扫描整个源表的查询 4. 如何使用Apache Spark将Hudi用于数据管道?...对于繁重的工作流,Hudi依赖于Apache Spark,因此可以像其他Spark作业一样轻松地扩展Hudi。 8.

    5.5K31

    【Spark Mllib】分类模型——各分类模型使用

    提取特征 由于数据格式的问题,我们做一些数据清理的工作,在处理过程中把额外的( " )去掉。数据集中还有一些用 "?" 代替的缺失数据,本例中,我们直接用 0 替换那些缺失数据。...在清理和处理缺失数据后,我们提取最后一列的标记变量以及第 5 列到第 25 列的特征矩阵。我们也对数据进行缓存并且统计数据样本的数目。...import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.linalg.Vectors...朴素贝叶斯模型 提取特征: 在对数据集做进一步处理之前,我们发现数值数据中包含负的特征值。我们知道,朴素贝叶斯模型要求特征值非负,否则碰到负的特征值程序会抛出错误。...因此,需要为朴素贝叶斯模型构建一份输入特征向量的数据,将负特征值设为 0 : val nbData = records.map { r => val trimmed = r.map(_.replaceAll

    1.1K30

    如何管理Spark的分区

    所以理解Spark是如何对数据进行分区的以及何时需要手动调整Spark的分区,可以帮助我们提升Spark程序的运行效率。 什么是分区 关于什么是分区,其实没有什么神秘的。...这也印证了源码中说的,repartition操作会将所有数据进行Shuffle,并且将数据均匀地分布在不同的分区上,并不是像coalesce方法一样,会尽量减少数据的移动。...通常情况下,结果集的数据量减少时,其对应的分区数也应当相应地减少。那么该如何确定具体的分区数呢?...上文提到:默认情况下,控制shuffle分区数的参数spark.sql.shuffle.partitions值为200,这将导致以下问题 对于较小的数据,200是一个过大的选择,由于调度开销,通常会导致处理速度变慢...对于大数据,200很小,无法有效使用群集中的所有资源 一般情况下,我们可以通过将集群中的CPU数量乘以2、3或4来确定分区的数量。

    2K10

    Apache Spark常见的三大误解

    最近几年关于Apache Spark框架的声音是越来越多,而且慢慢地成为大数据领域的主流系统。...然而很多人对Apache Spark的认识存在误解,在这篇文章中,将介绍我们对Apache Spark的几个主要的误解,以便给那些想将Apache Spark应用到其系统中的人作为参考。...虽然Spark允许我们使用内存缓存以及LRU替换规则,但是你想想现在的RDBMS系统,比如Oracle 和 PostgreSQL,你认为它们是如何处理数据的?...它其实是一种可以有效地使用内存LRU策略的技术。...Spark做出重要的一步是使用开源的方式来实现它!并且企业可以免费地使用它。大部分企业势必会选择开源的Spark技术,而不是付费的MPP技术。

    89860

    独家 | PySpark和SparkSQL基础:如何利用Python编程执行Spark(附代码)

    作者:Pinar Ersoy 翻译:孙韬淳 校对:陈振东 本文约2500字,建议阅读10分钟 本文通过介绍Apache Spark在Python中的应用来讲解如何利用PySpark包执行常用函数来进行数据处理工作...SparkSQL相当于Apache Spark的一个模块,在DataFrame API的帮助下可用来处理非结构化数据。...通过名为PySpark的Spark Python API,Python实现了处理结构化数据的Spark编程模型。 这篇文章的目标是展示如何通过PySpark运行Spark并执行常用函数。...dataframe = sc.read.json('dataset/nyt2.json') dataframe.show(10) 使用dropDuplicates()函数后,我们可观察到重复值已从数据集中被移除...10、缺失和替换值 对每个数据集,经常需要在数据预处理阶段将已存在的值替换,丢弃不必要的列,并填充缺失值。pyspark.sql.DataFrameNaFunction库帮助我们在这一方面处理数据。

    13.7K21

    写入 Hudi 数据集

    在运行启发式方法以确定如何最好地将这些记录放到存储上,如优化文件大小之类后,这些记录最终会被写入。 对于诸如数据库更改捕获之类的用例,建议该操作,因为输入几乎肯定包含更新。...支持自定义转换操作 命令行选项更详细地描述了这些功能: [hoodie]$ spark-submit --class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer...Datasource Writer hudi-spark模块提供了DataSource API,可以将任何数据帧写入(也可以读取)到Hudi数据集中。...通过允许用户指定不同的数据记录负载实现,Hudi支持对存储在Hudi数据集中的数据执行两种类型的删除。...") 存储管理 Hudi还对存储在Hudi数据集中的数据执行几个关键的存储管理功能。

    1.5K40

    【Apache Doris】周FAQ集锦:第 6 期

    引言 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目! 在这个栏目中,每周将筛选社区反馈的热门问题和话题,重点回答并进行深入探讨。...旨在为广大用户和开发者分享有关 Apache Doris 的常见问题。 通过这个每周 FAQ 栏目,希望帮助社区小伙伴更好地了解和应用 Apache Doris,促进经验交流和技术共享。...A1 如下: -- 必须同时指定 catalog 和 db jdbc:mysql://127.0.0.1:3306/my_catalog.my_db_name Q2 doris 如何类似 spark ml...A2 可基于 spark-doris-connector 将数据查出来再进行spark ml spark-doris-connector 内容可以查阅: https://doris.apache.org...A3 当前不支持,后续版本会提供一个替换物化视图的语法,例如:新建一个新schema的物化视图,再把新物化视图rename为老物化视图,不影响实际使用 2.1异步物化视图内容可以查阅: https://

    11710

    【Spark重点难点07】SparkSQL YYDS(加餐)!

    列剪裁就是只读取那些与查询相关的字段,减少数据读取的数量。 常量替换就更简单了,Catalyst会自动用常量替换一些表达式。...,具体操作类在org.apache.spark.sql.execution包下面 def strategies: Seq[Strategy] = experimental.extraStrategies...//这个参数的默认值是10000 //另外做内连接的时候还会判断左表右表的大小,shuffle取数据大表不动,从小表拉取数据过来计算 HashJoin :: //在内存里面执行...Loop Unrolling和SIMD:现代的编译器和CPU在编译和执行简单的for循环时,性能非常地高。...手写代码中的每一条指令都是明确的,可以顺序加载到 CPU 寄存器,源数据也可以顺序地加载到 CPU 的各级缓存中,因此,CPU 的缓存命中率和工作效率都会得到大幅提升。

    77120

    Spark on Kubernetes:Apache YuniKorn如何提供帮助

    Apache YuniKorn如何提供帮助 Apache YuniKorn(正在孵化)概述 YuniKorn是用于服务和批处理工作负载的增强型Kubernetes调度程序。...YuniKorn如何帮助运行Spark on K8s YuniKorn具有丰富的功能集,可帮助在Kubernetes上高效地运行Apache Spark。...一些主要优势是: • 一个YuniKorn队列可以在Kubernetes中自动映射到一个名称空间 • 队列容量本质上是弹性的,可以提供从配置的最小值到最大值的资源范围 • 尊重资源公平性可以避免可能的资源匮乏...CDP中的Apache YuniKorn Cloudera的CDP平台提供由Apache YuniKorn(孵化)提供支持的Cloudera 数据工程 经验。...YuniKorn因此使Apache Spark成为用户的企业级基本平台,为从大规模数据转换到分析到机器学习的各种应用程序提供了一个强大的平台。

    1.6K20

    Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践

    因此,引入 Apache Doris 替换了 Trino、Pinot 、 Iceberg 及 Kyuubi 技术栈,依赖于 Doris 的实时数据湖能力及高性能 OLAP 分析能力,统一数据湖仓及查询分析引擎...具体如下:数据湖能力: Apache Doris 支持 Multi-Catalog 多源数据目录,通过扩展 Catalog 和存储插件,无需将数据物理集中至统一的存储空间,仅借助 Apache Doris...02 统一数据湖仓及查询分析引擎基于上述优势,采用 Apache Doris 替换了原先数据湖仓 Iceberg ,统一了查询引擎 Trino、Kyuubi 以及 OLAP 分析引擎 Pinot。...新方案:基于 Doris 进行改造,将 Oracle 的存储过程改造到 Spark 与 Doris UDF 中,并使用 Doris 替换了 Iceberg,借助 Doris 高效存储和分析能力直接提供数据服务...Schema Registry 可轻松地将元数据推送至 MetaHub,实现集中存储与管理。

    7310

    Apache Hudi 0.9.0 版本发布

    版本亮点 Spark SQL DDL/DML支持 Apache Hudi 0.9.0实验性地支持使用Spark SQL进行DDL/DML操作,朝着让所有用户(非工程师、分析师等)更容易访问和操作Hudi...查询方面的改进 Hudi表现在在Hive中注册为spark数据源表,这意味着这些表上的spark SQL现在也使用数据源,而不是依赖于spark中的Hive fallbacks,这是很难维护/也是很麻烦的...[9]可用于验证提交前后的数据行不相同 org.apache.hudi.client.validator.SqlQuerySingleResultPreCommitValidator[10]可用于验证表是否产生特定值这些可以通过设置...增强对未提交的数据的自动清理,该增强在云存储上性能更优,具体来说是新增了一种新的标记机制,利用时间线服务器对底层存储执行集中协调的文件标记批量读/写,你可以使用这个配置[11]来启用,并在这个博客[12...S3EventsHoodieIncrSource[15]和S3EventsSource[16]有助于从 S3 读取数据,可靠且高效地将数据摄取到 Hudi。

    1.3K20

    spark 数据处理 -- 数据采样【随机抽样、分层抽样、权重抽样】

    随机抽样 分层抽样 权重抽样 SMOT 过采样 欠采样 spark 数据采样 是均匀分布的嘛?...,随机种子的输入值不同导致采样结果不同。...权重采样 选择权重值列,假设权重值列为班级,样本A的班级序号为2,样本B的班级序号为1,则样本A被采样的概率为样本B的2倍。...,通过设定标签列、过采样标签和过采样率,使用SMOTE算法对设置的过采样标签类别的数据进行过采样输出过采样后的数据集 SMOTE算法使用插值的方法来为选择的少数类生成新的样本 欠采样 spark 数据采样...spark scala老版本的文档: http://spark.apache.org/docs/2.4.7/api/scala/index.html#org.apache.spark.sql.DataFrameStatFunctions

    6.4K10
    领券