首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python环境配置&Pycharm安装

Python 如果有关注过Python的小伙伴可能知道,目前Python来说有两个比较主流的版本——Python2 & Python3,但这边强力推荐各位安装Python3,官方将从2020年元旦开始停止对...pip安装 印象中目前Python3应该是默认会安装pip的,我们同样可以先在终端输入pipor pip3来验证以下,如果出现以下界面,说明已经安装好了pip了。 ?...安装完成之后打开Pycharm会看到如下界面(第一次打开可能需要选择Pycharm主题,按自己喜好选择就好了),三个选项依次是创建新的项目,打开现有项目和从版本控制中选择项目。 ?...我们选择新建后回到如下界面,需要为你新建的项目取名和选择运行环境(可以选择当前存在的环境或者为当前项目创建一个新的虚拟环境)。 ?...项目创建完成之后,进入如下界面,右键单击创建一个Py文件; ? 接下来我们便可以hello world了。 ? 运行结果 ?

1.3K30

业界 | 用Python做数据科学时容易忘记的八个要点!

当我谷歌一个问题,发现有人提了同样问题,但下面只有一个回答,而且2003年以后就再也没有新的答案的时候,我真是和那个提问者同病相怜!弱小,可怜又无助! “你是谁!你在哪儿!最后你发现了啥!...Lambda函数用于在Python中创建小型的,一次性的和匿名的函数对象。基本上,它们可以让你“在不创建新函数的情况下”创建一个函数。...具体来说,map函数接受一个列表并通过对每个元素执行某种操作来将其转换为新列表。在下面的示例中,它遍历每个元素并将其乘以2的结果映射到新列表。请注意,这里的list函数只是将输出转换为列表类型。...,非常类似于map,但它通过将每个元素与布尔过滤规则进行比较来返回原始列表的子集。...无论如何,这些功能基本上就是以特定方式组合dataframe的方法。可能很难评判在什么时候使用哪个最好,所以让我们都回顾一下。

1.4K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    组会系列 | 自动梯度下降:没有超参数的深度学习

    因此,作者提出了这个新框架来解决这些问题。 该框架可以应用于新的损失函数和机器学习模型,并且可以与现有框架如主要-最小元算法、镜像下降和自然梯度下降相比较。...与现有框架如主要-最小元算法、镜像下降和自然梯度下降相比较,该框架可以应用于新的损失函数和机器学习模型。 3. 通过实验验证了该框架的有效性,并且证明了它可以在不同的数据集和模型上取得良好的结果。...此外,该节还介绍了如何使用该分解方法来评估线性化误差的有效性,并且给出了实验结果表明该方法可以在不同的数据集和模型上取得良好的结果。...该技术可以将目标函数分解为一系列上界和下界,并且通过最小化这些上界来降低目标函数。 具体来说,作者使用Bregman散度来构造这些上界和下界,并且证明了这种方法可以保证在每一步中获得改进。...该节展示了作者提出的新框架与现有优化算法之间的联系,并且为我们设计更有效的优化算法提供了新思路。

    80420

    精品课 - Python 数据分析

    对于功能,无非从它能干什么而目的导向去学习,比如如何插值,如何积分,如何优化,等等。 HOW WELL:怎么学好三者?..., iloc) 可互换 (stack, unstack) 可重设 (pivot, melt) ---- HOW 了解完数据帧本质之后,我们可从 Pandas 功能角度来学习它: 数据创建 (不会创建那还学什么...水平面上的灰点是网格 红线是终值条件 (产品在到期日支付函数) 两条深青线是边界条件 (产品在标的上下界时的支付) 蓝点是期权值 (产品在 0 时点的值) 从 T4 到 T0 一步步解的 (从后往前解...以上步骤弄明白了,要得到更精确的值,需要把 S 和 t 轴上的点打的更密就完事了,你看,其他书讲的很难懂的 PDE FD 我用几张简图可视化一下就好懂多了吧。...最值钱的是这些案例,除了将 NumPy, Pandas 和 SciPy 应用在金融上,你还能学到各种关于产品定价、风险管理、量化投资等金融工程的知识。

    3.3K40

    Pandas图鉴(二):Series 和 Index

    也可以用pdi.sidebyside(obj1, obj2, ...)来并排显示几个系列或DataFrames: pdi(代表pandas illustrated)是github上的一个开源库pdi[...大多数Pandas函数都会忽略缺失的值: 更高级的函数(median, rank, quantile等)也是如此。 算术操作是根据索引来调整的: 在索引中存在非唯一值的情况下,其结果是不一致的。...不要对具有非唯一索引的系列使用算术运算。 比较 对有缺失值的数组进行比较可能很棘手。...字符串和正则表达式 几乎所有的Python字符串方法在Pandas中都有一个矢量的版本: count, upper, replace 当这样的操作返回多个值时,有几个选项来决定如何使用它们: split...NaNs 在这个例子中,根据数值除以10的整数部分,将系列分成三组。

    33720

    灰太狼的数据世界(二)

    上一篇数据文章中,我们介绍了Numpy里面的一些结构,那么这次我们来介绍一些更好玩的东西----Pandas。Pandas这个东西在数据的世界里用的还是很频繁的,主要是用起来会比较方便。...那我们来看看下面这张图,如何来创建一个Series。 ? 直接使用pandas去找Series就可以啦!...下面问题来了,我们如何结合Numpy去创建一个Series呢?...讲完了创建那就来说一说取值吧,Series里面的值如何取出来呢? Series值的获取主要有两种方式: 1、通过方括号+索引的方式读取对应索引的数据,有可能返回多条数据。...还是小刚的数据比较小。 数学表达式: ? (每个数据减去均值求绝对值,如何再求这些绝对值的平均值) 总的来说,我们期望数据的离散程度越小越好(就是分布的范围越小越好)。

    67120

    python数据分析——数据的选择和运算

    例如,使用.loc和.iloc可以根据行标签和行号来选取数据,而.query方法则允许我们根据条件表达式来筛选数据。 在数据选择的基础上,数据运算则是进一步挖掘数据内在规律的重要手段。...关键技术:多维数组中对行的选择,使用[ ]运算符只对行号选择即可,具体程序代码如下所示: 花式索引与布尔值索引 ①布尔索引 我们可以通过一个布尔数组来索引目标数组,以此找出与布尔数组中值为True...axis-{0, 1, },默认值为0。这是要连接的轴。 join-{'inner', 'outer'},默认为’outer’。如何处理其他轴上的索引。外部表示联合,内部表示交叉。...程序代码如下所示: 三、算术运算与比较运算 通过一些实例操作来介绍常用的运算函数,包括一个数组内的求和运算、求积运算,以及多个 数组间的四则运算。...首先使用quantile()函 数计算35%的分位数,然后将学生成绩与分位数比较,筛选小于等于分位数的学生,程 序代码如下: 五、数值排序与排名 Pandas也为Dataframe实例提供了排序功能

    19310

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...If/then逻辑 假设我们想要根据 total_bill 是小于还是大于 10 美元,来创建一个具有低值和高值的列。 在Excel电子表格中,可以使用条件公式进行逻辑比较。...填充柄 在一组特定的单元格中按照设定的模式创建一系列数字。在电子表格中,这将在输入第一个数字后通过 shift+drag 或通过输入前两个或三个值然后拖动来完成。...这可以通过创建一个系列并将其分配给所需的单元格来实现。

    19.6K20

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    (1)QL称为下四分位数,表示全部观察中四分之一的数据取值比它小 ​ (2)QU称为上四分位数,表示全部观察值中有四分之一的数据取值比它大 ​ (3)IQR称为四分位数间距,是上四分位数0与下四分位数则之差...创建 Pandas数据对象时,如果没有明确地指出数据的类型,则可以根据传入的数据推断出来并且通过 dtypes属性进行查看。 ...根据轴方向的不同,可以将堆叠分成横向堆叠与纵向堆叠,默认采用的是纵向堆叠方式。  ​...3.2.1 pivot()方法  index:用于创建新 DataFrame对象的行索引。...columns:用于创建新 DataFrame对象的列索引 values:用于填充新 DataFrame对象中的值。  4.

    5.5K00

    Python 数学应用(二)

    1" 现在,我们可以使用随机数生成器rng上的choice方法,根据刚刚创建的概率从data中选择样本。...然后,我们可以使用后验信念执行相同的积分,以检查在给定这些新信息的情况下,转化率至少为 33%的概率。 在这个示例中,我们将看到如何使用贝叶斯技术根据我们假设的网站的新信息更新先验信念。...在本示例中,我们将看到如何创建新的 pandas Series 和 DataFrame 对象,并访问 Series 或 DataFrame 中的项目。...实际上,数据通常来自外部来源,如现有的电子表格或 CSV 文件、数据库或 API 端点。因此,pandas 提供了许多用于加载和存储数据到文件的实用程序。...我们将打印结果 DataFrame: df = data_frame.dropna() print(df) 它是如何工作的… 可以通过简单地将它们分配给新的列索引来向现有的DataFrame添加新列。

    26000

    Python办公自动化|光速对比并提取两份WordExcel中的不同元素

    大家好,又到了Python办公自动化专题 如果你经常与Excel或Word打交道,那么从两份表格/文档中找到不一样的元素是一件让人很头疼的工作,当然网上有很多方法、第三方软件教你如何对比两份文件。...本文就将以两份真实的Excel/Word文件为例,讲解如何使用Python光速对比并提取文件中的不同之处! 比较Excel 为了方便说明,我创建了一个简单的Excel用于示例 ?...首先我们还是创建两份有区别的Word文档,内容取自百度百科中的Python介绍[1] ? 左边的为原始word右边的word是我修改了几处的文档, 现在我们用Python来快速找到两份文档的不同。...结束语 通过介绍如何使用Python来对两个Excel/Word文件进行比较,我想你应该体会到了Python的强大之处,其实思路无非就是读取文件、定位之处并标记。...但更重要的是你在日常工作学习时是否可以想到用Python去解决那些繁琐费力的流程,学会使用Python合理偷懒才是我写办公自动化系列的目的,拜拜,我们下个案例见~ 注1: 本文使用的数据与源码可在后台回复

    5.1K31

    python中使用矢量化替换循环

    在后台,它将操作一次性应用于数组或系列的所有元素(不同于一次操作一行的“for”循环)。 接下来我们使用一些用例来演示什么是矢量化。...在使用 Pandas DataFrame 时,这种差异将变得更加显著。 数学运算 在数据科学中,在使用 Pandas DataFrame 时,开发人员使用循环通过数学运算创建新的派生列。...DataFrame 是行和列形式的表格数据。 我们创建一个具有 500 万行和 4 列的 pandas DataFrame,其中填充了 0 到 50 之间的随机值。...让我们看下面的例子来更好地理解它(我们将使用我们在用例 2 中创建的 DataFrame): 想象一下,我们要根据现有列“a”上的某些条件创建一个新列“e” ## 使用循环 import time start...m1、m2、m3……的值是通过使用与 x1、x2、x3……对应的数百万个值求解上述等式来确定的 import numpy as np # 设置 m 的初始值 m = np.random.rand(

    1.7K40

    在Python中一马平川的书写代码!

    pandas与scikit-learn中的pipe(),以及R中的管道操作符%>%等,它们都可以帮助我们像连接管道一样,将计算过程中的不同步骤顺滑的连接起来,从而取代繁琐的函数嵌套以及避免多余中间变量的创建...图1 链式编程与常规写法的比较如下例: # 非链式写法 func4(func3(func2(func1(A)))) # 链式写法 A.func1().func2().func3().func4()...,创造了Array这种特别的数据结构,常用的有如下几种创建方式: 「从其他数据结构创建」 最常规的方式是从现有的其他数据结构,转换到Array,常见如下面的几个例子: 图2 「类似numpy风格的规则创建方法...」 既然继承自列表,自然可以使用Python原生列表的索引与切片方式: 图6 「数组式索引」 我们都知道Python原生列表不能传入一系列标号对应的数组来一次性索引出多个值,除非转换为numpy数组或...: 图9 2.3 funct.Array的链式骚操作 讲完了如何创建与索引funct.Array之后,就来到了本文的重头戏——Array的链式运算上,在funct.Array中,几乎所有常见的数值与逻辑运算都被封装到方法中

    66720

    (数据科学学习手札107)在Python中利用funct实现链式风格编程

    pandas与scikit-learn中的pipe(),以及R中的管道操作符%>%等,它们都可以帮助我们像连接管道一样,将计算过程中的不同步骤顺滑的连接起来,从而取代繁琐的函数嵌套以及避免多余中间变量的创建...,创造了Array这种特别的数据结构,常用的有如下几种创建方式: 从其他数据结构创建   最常规的方式是从现有的其他数据结构,转换到Array,常见如下面的几个例子: ?...图6 数组式索引   我们都知道Python原生列表不能传入一系列标号对应的数组来一次性索引出多个值,除非转换为numpy数组或pandas的Series,但这又会在一些应用场景下丢失灵活性,但在Array...图9 2.3 funct.Array的链式骚操作   讲完了如何创建与索引funct.Array之后,就来到了本文的重头戏——Array的链式运算上,在funct.Array中,几乎所有常见的数值与逻辑运算都被封装到方法中...,我们来一阶一阶的来看看不同情况下如何组织代码: level1:基础的数值运算   首先我们来看看最基础的四则运算等操作在Array中如何链式下去: ?

    93010

    TiDB 源码阅读系列文章(十四)统计信息(下)

    在 统计信息(上) 中,我们介绍了统计信息基本概念、TiDB 的统计信息收集/更新机制以及如何用统计信息来估计算子代价,本篇将会结合原理介绍 TiDB 的源码实现。...数据结构定义 直方图的定义可以在 histograms.go 中找到,值得注意的是,对于桶的上下界,我们使用了在 《TiDB 源码阅读系列文章(十)Chunk 和执行框架简介》 中介绍到 Chunk 来存储...CM Sketch 的定义可以在 cmsketch.go 中找到,比较简单,包含了 CM Sketch 的核心——二维数组 table,并存储了其深度与宽度,以及总共插入的值的数量,当然这些都可以直接从...统计信息维护 在 统计信息(上) 中,我们介绍了 TiDB 是如何更新直方图和 CM Sketch 的。对于 CM Sketch 其更新比较简单,在这里不再介绍。...然而误差均匀的假设常常会引起问题,比如当当新插入的值大于直方图的最大值时,就会把新插入的值引起的误差分摊到直方图中,从而引起误差。

    95030

    Python 进阶视频课 - 6. SciPy 下

    NumPy 上 NumPy 下 Pandas 上 Pandas 下 SciPy 上 之前基础版的 11 节的目录如下: 编程概览 元素型数据 容器型数据 流程控制:条件-循环-异常处理 函数上...偏微分方程有限差分 (finite difference, FD) 算是金融工程中比较难学的,但我会讲里面所有难懂的概念可视化出来。...水平面上的灰点是网格 红线是终值条件 (产品在到期日支付函数) 两条深青线是边界条件 (产品在标的上下界时的支付) 蓝点是期权值 (产品在 0 时点的值) 从 T4 到 T0 一步步解的 (从后往前解...以上步骤弄明白了,要得到更精确的值,需要把 S 和 t 轴上的点打的更密就完事了,你看,其他书讲的很难懂的 PDE FD 我用几张简图可视化一下就好懂多了吧。...在 PDE FD 中用到了稀疏矩阵 (sparse matrix),这个算是 SciPy 中最有内容的知识点之一。和稠密矩阵相比,稀疏矩阵的最大好处就是节省大量的内存空间来储存零。

    69040

    Pandas中替换值的简单方法

    这可能涉及从现有列创建新列,或修改现有列以使它们适合更易于使用。为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的列。...import pandas as pd df = pd.read_csv('WordsByCharacter.csv') 使用“替换”来编辑 Pandas DataFrame 系列(列)中的字符串...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索值,以查找随后可以更改的值或子字符串。...首先,让我们快速看一下如何通过将“Of The”更改为“of the”来对表中的“Film”列进行简单更改。...也就是说,需要传递想要更改的每个值,以及希望将其更改为什么值。在某些情况下,使用查找和替换与定义的正则表达式匹配的所有内容可能更容易。

    5.5K30

    这个插件竟打通了Python和Excel,还能自动生成代码!

    它可以帮助对数据类型进行必要的更改、创建新特征、对数据进行排序以及从现有特征中创建新特征。...创建环境 我正在使用 Conda 创建一个新环境。你还可以使用 Python 的“venv”来创建虚拟环境。 conda create -n mitoenv python=3.8 2....添加和删除列 添加列 就像在 Excel 等电子表格中一样,你可以添加一个新列,该列可能是从现有列或特征创建的。要在 Mito 中执行此操作,只需单击“Add Col”按钮。...要更新该列的内容,请单击该列的任何单元格,然后输入值。你可以输入一个常量值,也可以根据数据集的现有特征创建值。如果要从现有列创建值,则直接使用要执行的运算符调用列名。...新列的数据类型根据分配的值进行更改。 下面的 GIF 演示了上面提到的所有内容: 删除列 通过单击选择任何列。 单击“Del Col”,该特定列将从数据集中删除。

    4.7K10

    Kaggle金牌得主的Python数据挖掘框架,机器学习基本流程都讲清楚了

    这可以特征工程创建一个关于家庭大小的变量。 舱室变量是一个标称数据类型,可用于特征工程中描述事故发生时船舶上的大致位置和从甲板上的船位。然而,由于有许多空值,它不增加值,因此被排除在分析之外。...缺失值填充 年龄,机舱和出发区域中存在空值或缺少数据。缺少值可能是不好的,因为某些算法不知道如何处理空值,并且会失败。而其他决策树等可以处理空值。...随后的模型迭代可能会修改此决策,以确定它是否会提高模型的准确性。 ? 数据创建与转换 数据创建 特征工程是当我们使用现有特征来创建新特征以确定它们是否提供新信号来预测我们的结果时。...然后,我们希望从相同的数据集中为它提供一个新的子集,并且在预测准确性方面具有相似的结果。 机器学习算法有很多,但是根据目标变量和数据建模目标的不同,它们可以分为四类:分类,回归,聚类或降维。...超参数调整 当我们使用sklearn决策树(DT)分类器时,我们接受了所有功能默认值。这使我们有机会了解各种超参数设置将如何改变模型的准确性。(单击此处以了解有关参数与超参数的更多信息。)

    56620

    图解pandas的assign函数

    在我们处理数据的时候,有时需要根据某个列进行计算得到一个新列,以便后续使用,相当于是根据已知列得到新的列,这个时候assign函数非常方便。下面通过实例来说明函数的的用法。...Pandas文章 本文是Pandas文章连载系列的第21篇,主要分为3类: 基础部分:1-16篇,主要是介绍Pandas中基础和常用操作,比如数据创建、检索查询、排名排序、缺失值/重复值处理等常见的数据处理操作...如果列名是不可调用的(例如:Series、标量scalar或者数组array),则直接进行分配 最后,这个函数的返回值是一个新的DataFrame数据框,包含所有现有列和新生成的列 导入库 import...: df.assign(col3=df["col2"].str.upper()) 方式2:调用Series数据 可以通过直接引用现有的Series或序列来实现相同的行为: # 方式2:调用现有的Series...assign和apply的主要区别在于:前者不改变原数据,apply函数是在原数据的基础上添加新列

    43220
    领券