首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python 实用技能 RAPIDS | 利用 GPU 加速数据科学工作流程

无论您是用 Pandas 处理一个大数据集,还是用 Numpy 在一个大矩阵上运行一些计算,您都需要一台强大的机器,以便在合理的时间内完成这项工作。...如果你尝试执行的流程有一个 GPU 实现,且该任务可以从并行处理中受益,那么 GPU 将更加有效。 上图示意多核系统如何更快地处理数据。对于单核系统(左),所有 10 个任务都转到一个节点。...你可以通过 Conda 将其直接安装到你的机器上,或者简单地使用 Docker 容器。在安装时,您根据实际情况设置您的系统规格,如 CUDA 版本和您想要安装的库。...,类似于我们将应用于 DBSCAN 的两个圆。...一个好的经验法则是,较大的数据集将更加受益于 GPU 加速。在 CPU 和 GPU 之间传输数据有一些开销时间,而对于较大的数据集,开销时间变得更值得。 我们可以用一个简单的例子来说明这一点。

2.4K51

机器学习数学基础:点积和欧几里得空间

为了深刻理解点积运算的含义,下面以我们最熟悉的平面空间中的两个向量 为例,以 为基并创建直角坐标系,则向量中的 即为相应的坐标。...点积的一个典型应用就是计算力所做的功: 在具体计算的过程中,按照上述代数形式或者几何形式均可。...手工计算向量的点积,可以依据(1.4.3)式完成,我们在这里不对此做重点介绍,因为这是诸多线性代数教材中都少不了的。下面要演示的是如何用程序实现点积计算。...: 显然,np.dot()所进行的点积计算与矩阵乘法一致(参阅2.1.5节)。...此外,Pandas 的 Series 对象和 DataFrame 对象也都有名为dot()的方法实现点积运算。 ★《机器学习数学基础》由电子工业出版社出版,各大电商平台有售。

69920
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    nvidia-rapids︱cuGraph(NetworkX-like)关系图模型

    RAPIDS cuGraph库是一组图形分析,用于处理GPU数据帧中的数据 - 请参阅cuDF。...cuHornet的加入提供了基于边界的编程模型、动态数据结构以及现有分析的列表。除了核心数函数之外,可用的前两个cuHornet算法是Katz centrality 和K-Cores。...cuGraph是RAPIDS的图形分析库,针对cuGraph我们推出了一个由两个新原语支持的多GPU PageRank算法:这是一个COO到CSR的多GPU数据转换器,和一个计算顶点度的函数。...这些原语会被用于将源和目标边缘列从Dask Dataframe转换为图形格式,并使PageRank能够跨越多个GPU进行缩放。 下图显示了新的多GPU PageRank算法的性能。...平均结果显示,新的多GPU PageRank分析比100节点Spark集群快10倍以上。 ?

    1.7K10

    灵魂三问 TPU

    给定新图片 (含数字 8),它的像素值和训练好的数字 7、8、9 对应的权重值如下。 然后分别计算 x 和 w7, w8 和 w9 的点积,如下面动图所示。...最后找出点积最大的,如果 w8x 最大,那么该数字是 8。 下面三节分别讲解 CPU、GPU 和 TPU 是如何计算点积的 (或更通用的矩阵相乘)。...看下面动图,在点积里的乘法操作中,x 里面的 9 个元素先和 w7 里面的 9 个元素两两相乘;再和 w8 里面的 9 个元素两两相乘;最后和 w9 里面的 9 个元素两两相乘。...将权重 W (红点) 从左向右的流入数组。 将像素 X (灰点) 从下向上的流入数组。 每个单元在每个间隔中从左和从下只接受一个数据,将它们相乘并累加到之前的结果中,直到没有数据流入。...Ring AllReduce 分两个阶段: Scatter Reduce:每一个处理器下一个处理器发送数据,下一个处理器接收并累加到自己的数据上。

    2.2K20

    如何通过Maingear的新型Data Science PC将NVIDIA GPU用于机器学习

    一般来说,GPU之所以快,是因为它们具有高带宽的内存和以比传统CPU更高的速率执行浮点运算的硬件[1]。GPU的主要任务是执行渲染3D计算机图形所需的计算。...在并行处理大数据块的情况下,此设计比通用中央处理器(CPU)更有效的算法-Wikipedia上的CUDA文章 [2] 基本上,机器学习会执行处理大量数据的操作,因此GPU在执行ML任务时非常方便。...除其他工具外,还有回归,分类,聚类和降维算法的实现。...在使工作流程变得困难的其他软件工程挑战中,计算数据的大小和时间是两个瓶颈,这两个瓶颈使无法在运行实验时进入流程状态。...拥有一台可以改善这一点的PC和工具确实可以加快工作,并帮助更快地在数据中发现有趣的模式。想象得到一个40 GB的csv文件,然后只需将其加载到内存中即可查看其内容。

    1.9K40

    每次矩阵相乘用不到一个光子,手写数字识别准度超90%,光学神经网络效率提升数个量级

    在光学中,有几种不同的方法来实现并行操作:波长多路复用、光子中的集成电路空间多路复用和 3D 自由空间光学处理器中的空间多路复用。...迄今为止,在所有多路复用方法和架构中,模拟 ONN 都使用较小的向量 - 向量点积(作为实现卷积层和完全连层的基本操作)或矩阵向量乘法(用于实现完全连接的层),将向量限制最多 64 维(远低于 10^3...与矩阵 W 的第 i 行之间的点积。 当光通过设置,矩阵向量乘法中涉及的所有标量乘法和加法被并行计算完成。向量元素在光强度中的编码将设置限为使用矩阵和具有非负元素的向量执行矩阵向量乘法。...在第一个表征实验中,研究者计算了随机选择的向量对的点积(图 2a),将通过点积计算得到的表征结果直接应用于通用矩阵向量乘法的设置(看作向量 - 向量点积计算)。...为了使实验获得的模拟数字精度与数字处理器中的数字精度之间能够进行对比,研究者将每个测得的模拟误差百分比解释为对应于计算出的点积答案的有效位精度。

    62230

    《python数据分析与挖掘实战》笔记第3章

    异常值是指样本中的个别值,其数值明显偏离其余的观测值。异常值也称为离群点,异常值的分析也称为离群点的分析。...如发展速度、增长速度等。 3.2.3、统计量分析 用统计指标对定量数据进行统计描述,常从集中趋势和离中趋势两个方面进行分析。...将所有数值由小到大排列并分成四等份,处于 第一个分割点位置的数值是下四分位数,处于第二个分割点位置(中间位置)的数值是中位 数,处于第三个分割点位置的数值是上四分位数。...r的平方越接近于1,表明x与y之间的相关性越强;r的平方越接近于0,表明两个变量之间几乎没有直线相关关系。...使用格式:D.cov() 样本D可为DataFrame,返回协方差矩阵; Sl.cov(S2), SI、S2均为Series,这种格式指定计算两个Series之间的协方差。

    2.2K20

    深度学习-数学基础

    属性 轴的个数:3D张量有3个轴,类似坐标系 形状:整数元组(元组的概念相见python基础),表示每个周的维度大小,如2*2的矩阵形状为(2,2) 数据类型:float32、uint8、float64...图像:4D张量形状为(样本, 图形高, 图形宽, 色彩通道) 视频:5D张量,形状为(样本, 帧数, 图形高, 图形宽, 色彩通道) 张量计算 逐元素计算 遍历整个张量,每个元素进行计算,如张量的加法运算...点积运算 一般用.来表示,它和逐元素运算的不同在于点积运算在乘法之后还要进行加法运算,因此两个向量点积最终生成的是一个标量,而1个矩阵和1个向量点积,生成一个向量 张量变形 张量变形是指改变张量的行和列...此时的参数为初始化随机参数 计算y_pred 和y 之间的距离,衡量损失。 更新网络的所有权重,目标是使得目标函数损失减少。...,因此可以通过数学中的链式法则运算,可以实现神经网络的反向传播,如网络f包含3 个张量运算a、b 和c,还有3个权重矩阵W1、W2 和W3 f(W1, W2, W3) = a(W1, b(W2, c(W3

    1.1K10

    68. 三维重建3-两视图几何

    三角测量 1.1 基本模型 很显然,由于上图中红色射线上任何一个点X都可以映射到图像上的点x,因此单从这个模型我们是如法确定三维点的确切位置的。...如果我们将向量的长度归一化为1,就会得到单位向量 向量和向量之间是可以进行运算的,我们下面特别介绍向量和向量的点积和叉积: 向量的点积 向量的点积结果是一个数,通常用于确定向量之间的夹角。...两个向量叉积结果是一个向量,且这个新向量和原始的两个向量都正交 如果两个向量的方向一致,那么它们叉积结果向量的长度为0 两个向量点积的结果是一个数。...由下图可见,我们很容易通过一些简单的变换从点x得到点x' 假设两个光心之间的向量为t,x和x'分别是以o和o'为原点的相机坐标系中的点 先把点x平移到x-t,可以认为x-t是以o'为原点了 然后,绕原点...基础矩阵:在图像像素坐标系中的对极几何约束的数学关系,以及如何用8点法来求基础矩阵 因为篇幅原因,我省掉了如何通过非线性最小二乘法自动的求解基础矩阵的过程。

    93920

    Numpy和pandas的使用技巧

    数组中的所有数据消耗掉的字节数 ndarray.flags 数组对象的内存信息 2.5、矩阵的维度 0维矩阵 A=3.6 A.shape=() 1维矩阵...) 创建未初始化的数组, 创建随机数组, np.random.random() 创建指定行列的随机矩阵,元素为0到1之间 np.random.rand(10, 10)...v2)) horizontal 水平的 △ np.c_[] 按列左右连接两个矩阵 △ np.r_[] 按行上下连接两个矩阵 6、NumPy 数组操作 △ n.reshape(arr,newshape,...7、NumPy 线性代数 △ n.dot() 数组元素的点积,即元素对应相乘 △ n.matmul() 两个数组的矩阵积4 △ n.linalg.det() 求行列式的值 △ n.linalg.inv...() 计算矩阵的逆 n.vdot() 两个向量的点积 n.inner() 两个数组的内积 n.determinant() 数组的行列式 n.solve() 求解线性矩阵方程

    3.5K30

    小白见过的最通俗易懂的卷积解释

    然后再把g函数平移到n,在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的“积”的过程。...这个只是从计算的方式上对公式进行了解释,从数学上讲无可挑剔,但进一步追问,为什么要先翻转再平移,这么设计有何用意?还是有点费解。...在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。 举例说明 下面举几个例子说明为什么要翻转,以及叠加求和的意义。...中 马同学的例子。图像可以表示为矩阵形式(下图摘自马同学的文章): ? 对图像的处理函数(如平滑,或者边缘提取),也可以用一个g矩阵来表示,如: ?...推而广之,如果如果g矩阵不是3x3,而是6x6,那我们就要在原始图像中取以(u,v)为中心的6x6矩阵进行计算。由此可见,这种卷积就是把原始图像中的相邻像素都考虑进来,进行混合。

    92420

    如何通俗易懂地解释卷积?

    然后再把g函数平移到n,在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的“积”的过程。...这个只是从计算的方式上对公式进行了解释,从数学上讲无可挑剔,但进一步追问,为什么要先翻转再平移,这么设计有何用意?还是有点费解。...在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。 4、举例说明 下面举几个例子说明为什么要翻转,以及叠加求和的意义。...中马同学的例子。图像可以表示为矩阵形式(下图摘自马同学的文章): ? 对图像的处理函数(如平滑,或者边缘提取),也可以用一个g矩阵来表示,如: ?...推而广之,如果如果g矩阵不是3x3,而是6x6,那我们就要在原始图像中取以(u,v)为中心的6x6矩阵进行计算。由此可见,这种卷积就是把原始图像中的相邻像素都考虑进来,进行混合。

    52011

    【CNN】很详细的讲解什么以及为什么是卷积(Convolution)!

    然后再把g函数平移到n,在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的“积”的过程。...这个只是从计算的方式上对公式进行了解释,从数学上讲无可挑剔,但进一步追问,为什么要先翻转再平移,这么设计有何用意?还是有点费解。...在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。 4、举例说明 下面举几个例子说明为什么要翻转,以及叠加求和的意义。...图像可以表示为矩阵形式(下图摘自马同学的文章): 对图像的处理函数(如平滑,或者边缘提取),也可以用一个g矩阵来表示,如: 注意,我们在处理平面空间的问题,已经是二维函数了,相当于: 那么函数f和...首先我们在原始图像矩阵中取出(u,v)处的矩阵: 然后将图像处理矩阵翻转(这个翻转有点意思,不是延x轴和y轴两个方向翻转,而是沿右上到左下的对角线翻转,这是为了凑后面的内积公式。)

    5.3K33

    【CNN】很详细的讲解什么以及为什么是卷积(Convolution)!

    然后再把g函数平移到n,在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的“积”的过程。...这个只是从计算的方式上对公式进行了解释,从数学上讲无可挑剔,但进一步追问,为什么要先翻转再平移,这么设计有何用意?还是有点费解。...在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。 4、举例说明 下面举几个例子说明为什么要翻转,以及叠加求和的意义。...中马同学的例子。图像可以表示为矩阵形式(下图摘自马同学的文章): ? 对图像的处理函数(如平滑,或者边缘提取),也可以用一个g矩阵来表示,如: ?...推而广之,如果如果g矩阵不是3x3,而是6x6,那我们就要在原始图像中取以(u,v)为中心的6x6矩阵进行计算。由此可见,这种卷积就是把原始图像中的相邻像素都考虑进来,进行混合。

    1.3K50

    如何通俗易懂地解释图像卷积?

    然后再把g函数平移到n,在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的“积”的过程。...这个只是从计算的方式上对公式进行了解释,从数学上讲无可挑剔,但进一步追问,为什么要先翻转再平移,这么设计有何用意?还是有点费解。...在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。 举例说明 下面举几个例子说明为什么要翻转,以及叠加求和的意义。...中马同学的例子。图像可以表示为矩阵形式(下图摘自马同学的文章): ? 对图像的处理函数(如平滑,或者边缘提取),也可以用一个g矩阵来表示,如: ?...推而广之,如果如果g矩阵不是3x3,而是6x6,那我们就要在原始图像中取以(u,v)为中心的6x6矩阵进行计算。由此可见,这种卷积就是把原始图像中的相邻像素都考虑进来,进行混合。

    1.3K10

    如何通俗易懂地解释卷积?

    然后再把g函数平移到n,在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的“积”的过程。...这个只是从计算的方式上对公式进行了解释,从数学上讲无可挑剔,但进一步追问,为什么要先翻转再平移,这么设计有何用意?还是有点费解。...在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。 举例说明 下面举几个例子说明为什么要翻转,以及叠加求和的意义。...图像可以表示为矩阵形式(下图摘自马同学的文章): 对图像的处理函数(如平滑,或者边缘提取),也可以用一个g矩阵来表示,如: 注意,我们在处理平面空间的问题,已经是二维函数了,相当于: 那么函数f和g的在...首先我们在原始图像矩阵中取出(u,v)处的矩阵: 然后将图像处理矩阵翻转(这个翻转有点意思,不是延x轴和y轴两个方向翻转,而是沿右上到左下的对角线翻转,这是为了凑后面的内积公式。)

    47320

    如何通俗易懂地解释卷积?

    然后再把g函数平移到n,在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的“积”的过程。...这个只是从计算的方式上对公式进行了解释,从数学上讲无可挑剔,但进一步追问,为什么要先翻转再平移,这么设计有何用意?还是有点费解。...在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。 举例说明 下面举几个例子说明为什么要翻转,以及叠加求和的意义。...中马同学的例子。图像可以表示为矩阵形式(下图摘自马同学的文章): ? 对图像的处理函数(如平滑,或者边缘提取),也可以用一个g矩阵来表示,如: ?...推而广之,如果如果g矩阵不是3x3,而是6x6,那我们就要在原始图像中取以(u,v)为中心的6x6矩阵进行计算。由此可见,这种卷积就是把原始图像中的相邻像素都考虑进来,进行混合。

    1.8K20

    NumPy使用图解教程「建议收藏」

    当然,在此基础上举一反三,也可以实现减法、乘法和除法等操作: 许多情况下,我们希望进行数组和单个数值的操作(也称作向量和标量之间的操作)。...(broadcast)进行操作处理: 与算术运算有很大区别是使用点积的矩阵乘法。...NumPy提供了dot()方法,可用于矩阵之间进行点积运算: 上图的底部添加了矩阵尺寸,以强调运算的两个矩阵在列和行必须相等。...我们可以像聚合向量一样聚合矩阵: 不仅可以聚合矩阵中的所有值,还可以使用axis参数指定行和列的聚合: 矩阵的转置和重构 处理矩阵时经常需要对矩阵进行转置操作,常见的情况如计算两个矩阵的点积。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 音频和时间序列 音频文件是一维样本数组。

    2.9K30

    一键获取新技能,玩转NumPy数据操作

    若要计算两个数组的加法,只需简单地敲入data + ones,就可以实现对应位置上的数据相加的操作(即每行数据进行相加),这种操作比循环读取数组的方法代码实现更加简洁。 ?...当然,在此基础上举一反三,也可以实现减法、乘法和除法等操作: ? 许多情况下,我们希望进行数组和单个数值的操作(也称作向量和标量之间的操作)。...与算术运算有很大区别是使用点积的矩阵乘法。NumPy提供了dot()方法,可用于矩阵之间进行点积运算: ? 上图的底部添加了矩阵尺寸,以强调运算的两个矩阵在列和行必须相等。...不仅可以聚合矩阵中的所有值,还可以使用axis参数指定行和列的聚合: ? 矩阵的转置和重构 处理矩阵时经常需要对矩阵进行转置操作,常见的情况如计算两个矩阵的点积。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ? 音频和时间序列 音频文件是一维样本数组。

    1.7K20

    一键获取新技能,玩转NumPy数据操作

    若要计算两个数组的加法,只需简单地敲入data + ones,就可以实现对应位置上的数据相加的操作(即每行数据进行相加),这种操作比循环读取数组的方法代码实现更加简洁。 ?...当然,在此基础上举一反三,也可以实现减法、乘法和除法等操作: ? 许多情况下,我们希望进行数组和单个数值的操作(也称作向量和标量之间的操作)。...与算术运算有很大区别是使用点积的矩阵乘法。NumPy提供了dot()方法,可用于矩阵之间进行点积运算: ? 上图的底部添加了矩阵尺寸,以强调运算的两个矩阵在列和行必须相等。...不仅可以聚合矩阵中的所有值,还可以使用axis参数指定行和列的聚合: ? 矩阵的转置和重构 处理矩阵时经常需要对矩阵进行转置操作,常见的情况如计算两个矩阵的点积。...电子表格中的每个工作表都可以是自己的变量。python中类似的结构是pandas数据帧(dataframe),它实际上使用NumPy来构建的。 ? 音频和时间序列 音频文件是一维样本数组。

    1.8K10
    领券