论文链接:https://d4mucfpksywv.cloudfront.net/research-covers/learning-dexterity/learning-dexterity-paper.pdf
【新智元导读】之前在DOTA2团队战中战胜人类玩家的OpenAI Five,现在被用于训练机器手,取得了前所未有的灵活度。这只机器手完全在虚拟环境中自我学习和训练,然后成功迁移到现实世界解决实际问题。OpenAI使用6144个CPU和8个GPU来训练,50小时内收集了大约100年的经验。
随机对照试验可以得到较为可靠的证据,在预防医学研究和临床医学研究中扮演非常重要的角色。人体试验中,实验组和对照组受试对象的特征(如年龄、性别、是否服药、是否有运动习惯等等)常成为研究过程中的混杂因素,对研究结果产生重要影响。
【导读】10月15日,人工智能研究机构OpenAI发布了一条机械手单手解魔方的视频。这个自学式的类人机器人手臂名为 Dactyl,不仅可以单手解魔方,甚至能在外加各种干扰,比如“蒙眼”,用布娃娃长颈鹿干扰下继续完成任务。这次,这套机械手系统使用的是此前用于 OpenFive 同样的强化学习代码,加上一项名为 Automatic Domain Randomization (ADR,自动化域随机)的新技术,这套系统可以处理之前未见过的场景,再次证明了强化学习的强大学习能力。
在运行测试时,go命令可以接受一组参数来设置测试执行的方式。一个常见的问题是忽视了设置这些参数,导致错过了可能带来更快执行和发现可能错误的方法。本文将深入研究其中的两个参数:parallel和shuffle.
给你一个魔方,只允许使用一只手,还时不时有人给你捣乱,你能在4分钟内还原它吗?我不能,两只手都不行。
前几天有人问我R里面怎么做零模型。 有现成的函数,picante包的randomizeMatrix直接就搞定了。 我回复之后随便在网上搜了一下,意外发现竟然没有搜到相关的文章。 那就简单写写吧。
上一期我们介绍了差分隐私这种隐私保护手段。在2020年“全球十大突破性技术”的评选中,差分隐私和数字货币都出现在了这份榜单上。简单来说,差分隐私技术是一种较为成熟的隐私保护手段,这一技术的提出是为了应对差分攻击。一个通俗易懂的例子是:通过应用差分隐私保护技术,攻击者即使知道100个人的平均薪水和其中99人的平均薪水,他也不能通过对比(差分)这两个信息来获得另外1个人的薪水信息。
Title: segRDA: An R package for performing piecewise redundancy analysis
栈溢出保护是一种缓冲区溢出攻击缓解手段,当函数存在缓冲区溢出攻击漏洞时,攻击者可以覆盖栈上的返回地址来让shellcode能够得到执行。当启用栈保护后,函数开始执行的时候会先往栈里插入cookie信息,当函数真正返回的时候会验证cookie信息是否合法,如果不合法就停止程序运行。攻击者在覆盖返回地址的时候往往也会将cookie信息给覆盖掉,导致栈保护检查失败而阻止shellcode的执行。在Linux中我们将cookie信息称为canary。
在分析算法的性能时,期望运行时间是一个重要的指标,它描述了算法在平均情况下的表现。期望运行时间考虑了所有可能的情况,包括输入数据的分布和随机性等因素。
简单介绍一下实证论文中双重差分法(DID)的安慰剂检验(Placebo Test)在Stata中如何操作。
在前面的内容中,我们讨论了因果关系的含义,并介绍了使用工具变量(IV)估算因果效应的方法和示例。在本章中,我们考虑对孟德尔随机化估计的因果效应的解释,并讨论在何种情况下孟德尔随机化估计的结果可以作为临床实践的可靠指南。
这种实现逻辑的一个弊端就是会在已经布雷的位置再度布雷,进而导致整个区域的布雷数量与要求不符合。
今天我们提供一些示例来说明孟德尔随机化估计值与其他流行病学方法的估计值之间的差异,例如随机对照试验(RCT)的效果估计,以及多变量调整回归模型的观测关联。
随着机器学习的复杂度和影响力不断提升,许多人希望找到一些解释的方法,用于阐释学得模型的重要属性 [1, 2]。对模型的解释可能有助于模型满足法规要求 [3],帮助从业人员对模型进行调试 [4],也许还能揭示模型学到的偏好或其他预期之外的影响 [5, 6]。显著性方法(Saliency method)是一种越来越流行的工具,旨在突出输入(通常是图像)中的相关特征。尽管最近有一些令人振奋的重大研究进展 [7-20],但是解释机器学习模型的重要努力面临着方法论上的挑战:难以评估模型解释的范围和质量。当要在众多相互竞争的方法中做出选择时,往往缺乏原则性的指导方针,这会让从业者感到困惑。
随机数算法可谓是涵盖了多个领域,其中蕴含了提升安全性、增强性能,还有改进资源分配等关键方面。那么关于如何充分利用随机数算法优化局域网管理软件呢?下面,我为大家罗列了一些策略,或许能够为提供一些思路,更好地运用随机数算法来提升局域网管理软件的表现:
工具变量(IV)技术是可用于估算因果效应的几种方法之一,而无需完全了解所有可能影响暴露-结局关系的混杂因素。在这一期中,我们继续回顾和讨论IV的特性,并探讨实际研究中的IV假设是如何被违背的。
选自phys.org 机器之心编译 参与:机器之心编辑部 莱斯大学的计算机科学家已经改编了一种普遍使用的技术来快速检查数据从而削减计算量,因此深度学习所需的能耗和时间也有所削减。 莱斯大学的助理教授
原文地址:Double Stuffed Security in Android Oreo 原文作者:Gian G Spicuzza 译文出自:掘金翻译计划 本文永久链接:github.com/xitu/gold-m… 译者:一只胖蜗牛 校对者:corresponding,SumiMakito 像奥利奥一样的双重安全措施,尽在 Android Oreo 由 Android 安全团队的 Gian G Spicuzza 发表 Android Oreo 中包含很多安全性提升的更新。几个月以来,我们讨论了如何增强
在本期中,我将说明孟德尔随机化的基础概念与研究框架,并解释如何使用孟德尔随机化去解决常规流行病学问题。
动态连接的程序调用了libc的库函数,但是libc在运行才被加载到内存中,调用libc函数时,才解析出函数在内存中的地址,为了帮助程序更好的利用内存空间,不用每次把所有的函数真实地址都写进去,用到哪个查哪个,之后在使用就会很方便。
通常我们认为每个测试用例都是相互独立的,因此需要保证测试结果不依赖于测试顺序,以不同的顺序运行测试用例,可以得到相同的结果。 pytest默认运行用例的顺序是按模块和用例命名的 ASCII 编码顺序执行的,这就意味着每次运行用例的顺序都是一样的。 app 测试里面有个 monkey 测试,随机在页面点点点,不按常理的点点点能找到更多的不稳定性 bug。那么我们在写pytest用例的时候,既然每个用例都是相互独立的, 那就可以打乱用例的顺序随机执行,用到 pytest 的插件 pytest-random-order 可以实现此目的,github 地址https://github.com/jbasko/pytest-random-order
AI 科技评论按:今年 2 月,OpenAI 发起了一组机械手挑战,他们在基于 MuJoCo 物理模拟器的 Gym 环境中新设计了含有机械臂末端控制、机械手拿取物体的两组八个有难度的、早期强化学习算法已经不足以直接解决的问题。这些具有一定难度的任务 OpenAI 自己也在研究,他们认为这是深度强化学习发展到新时代之后可以作为新标杆的算法测试任务,而且也欢迎其它机构与学校的研究人员一同研究这些任务,把深度强化学习的表现推上新的台阶。
今天给大家讲讲DNN(深度神经网络)在训练过程中遇到的一些问题,然后我们应该怎么去注意它,并学会怎么去训练它。
查找一个序列中的最大/最小值时间复杂度均为 ,而查询一个序列中第 大的数时间复杂度最坏情况下即为排序的最好时间复杂度 只考虑比较排序),但利用快排的 思想也可以达到期望 的时间复杂度,最坏情况下 的时间复杂度。
之前,我们深入研究了简单的生成分类器(见朴素贝叶斯分类)和强大的辨别分类器(参见支持向量机)。 这里我们来看看另一个强大的算法的动机 - 一种称为随机森林的非参数算法。 随机森林是组合方法的一个例子,这意味着它依赖于更简单估计器的整体聚合结果。 这种组合方法的结果令人惊讶,总和可以大于部分:即,多个估器中的多数表决最终可能比执行表决的任何个体的估计更好! 我们将在以下部分中看到这个例子。 我们从标准导入开始:
在构建一个高效、稳定的爬虫系统中,经常会遇到网络异常或目标网站限制等问题导致请求失败。为了应对这些情况并保证数据抓取顺利进行,使用HTTP爬虫ip进行请求重试是一种有效且关键的策略。本文将介绍如何通过使用HTTP爬虫ip来提升爬虫系统的稳定性。
作者 | Sergey Gitlin、Krishna Puttaswamy、Luke Duncan、Deepak Bobbarjung、Arun Babu A S P 译者 | 平川 策划 | Tina 摘要:经过一年多的努力,我们为 Uber 的试验和特性标记生态打下了坚实的基础,相关的一切都已经转移到了新系统上,包括 2000 多名开发人员、集成的超过 15 个合作伙伴的系统、10 多个移动应用、350 多个服务。我们弃用了 Morpheus 中超过 5 万个过时的试验。 本文最初发布于
学术研究发展了这么多年,前人已经为我们积累了丰厚的科学经验,形成了多种常见的研究(学术文章)类型,并且形成了固定的写作套路,甚至产生了标准,譬如 Meta 分析要严格对照 PRISMA guidelines 进行写作。
缓冲区溢出实验(Linux 32位) 参考教程与材料:http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/ (本文记录了做SEED缓冲区溢出实验的体会与问题,侧重实践,而不是讲解缓冲区溢出原理的详细教程) 1. 准备工作 使用SEED ubuntu虚拟机进行缓冲区溢出实验,首先要关闭一些针对此攻击的防御机制来简化实验。 (1)内存地址随机化(Address Space Randomization):基于Linux的操作
栈溢出保护是一种缓冲区溢攻击缓解手段,当函数存在缓冲区溢出攻击漏洞时,攻击者可以覆盖栈上的返回地址来让shellcode能够得到执行,当启动栈保护后,函数开始执行的时候会显往栈里插入cookie的信息,当函数真正返回的时候会验证cookie信息是否合法,如何不合法就停止程序运行。攻击者在覆盖返回地址的时候往往会将cookie信息给覆盖掉,导致栈保护检查失败而阻止shellcode的执行。在Linux中的cookie信息成为canary。
【新智元导读】一场或许有关深度学习本质的争论正在火热进行中。去年底,MIT、DeepMind 和谷歌大脑合著的论文《理解深度学习需要重新思考泛化》引发热论。论文指出,经典统计学习理论和正则化策略不能解释小的泛化误差为何发生,神经网络实现高性能泛化的真正原因是“能够记忆数据”。但最近,Bengio 实验室的一篇 ICLR-17 论文提出了反对观点,认为神经网络并不通过记忆学习。更好的泛化理论能让我们设计出比 dropout、bachnorm,l2 等更好的正则化方法,从而带来更好的深度学习。神经网络的泛化能力
标签传播算法是一种半监督机器学习算法,它将标签分配给以前未标记的数据点。要在机器学习中使用这种算法,只有一小部分示例具有标签或分类。在算法的建模、拟合和预测过程中,这些标签被传播到未标记的数据点。
在黑客安全圈子中,基于内存攻击技术的攻击手段在随着时代的变化而不断发展着,内存攻击是指通过利用软件的安全漏洞,构造恶意的输入,从而使正常程序造成拒绝服务或者是远程获得控制权,内存攻击技术中最先登上历史舞台的就是缓冲区溢出漏洞,时至今日能够被广泛利用的并具有较大破坏性的高危漏洞(CVE)几乎都属于缓冲区溢出。
在今天的数据驱动世界中,ORDER BY RAND()成为了一个强大的SQL技巧,帮助开发者从数据库中随机选取数据。无论是MySQL, PostgreSQL, SQLite还是SQL Server,每种数据库都有其独特方式实现随机化查询。本文将深入浅出地讲解ORDER BY RAND()的用法,适配不同数据库,并提供实战案例。适合所有级别的读者,包括SQL新手和数据库专家。掌握这一技巧,将为你的数据查询带来无限可能!
久违的孟德尔随机化开始更新了,在今天的内容中,我将向大家介绍孟德尔随机化的基本概念及其背景知识,并举例说明何时可以使用该方法以及该方法为何能有效解释因果关系。本系列讲解内容主要基于Stephen Burgess和Simon G. Thompson共同撰写的孟德尔随机化图书。
ROP(Return-Oriented Programming)攻击是一种高级的内存攻击技术,其利用现有代码段中已有的指令序列来构建恶意代码,进而执行恶意操作。ROP攻击通常与缓冲区溢出攻击结合使用,通过覆盖栈上的返回地址,使程序执行流程跳转到精心构造的ROP链上。
在进行网络爬虫开发时,经常会遇到网站的反爬措施。本文将介绍两种有效的方法来提高安全性,分别是User Agent随机化和HTTPS绕过策略。通过这些技巧可以提高爬虫稳定性、减少无效概率,并顺利获取所需数据。
GWAS(Genome-wide association studies) 是 20 世纪最后 25 年由假设驱动的候选基因关联研究(CGAS)演变而来的。随着技术的发展,无偏见的全基因组搜索成为可能。随着技术的发展,无偏见的全基因组成为可能。然而,与候选基因关联研究一样,这些研究最初也是为了产生两类有价值的知识:首先,研究人员希望发现疾病起源的潜在分子机制,特别是确定所有相关基因和基因变异(即疾病因果关系)。
在孟德尔随机化研究中,弱工具变量偏倚(weak instrument bias)是需要我们认真对待的一个问题,它通常是因为样本量较小导致的。在往期推送中,米老鼠和大家介绍过评价弱工具变量偏倚的策略------孟德尔随机化之F统计量。一般而言,当F 统计量大于经验值10时,我们认为工具变量法估计值的偏倚大约是观察性研究的10%,因此F大于10这个标准在孟德尔随机化研究中广为使用。然而,这样的盲目使用不见得是合理的。
根据最新发布的研究,从2011年至2019年,AMD处理器一直存在以前从未公开的漏洞,这些漏洞使它们容易受到两种新型的侧信道攻击。
领取专属 10元无门槛券
手把手带您无忧上云