在运维管理中,经常遇到时间序列的数据,比如网卡流量、在线用户数、并发连接数,等等。用散点图可以直观的查看数据的分布情况。...matplotlib模块的pyplot有画散点图的函数,但是该函数要求x轴是数字类型。pandas的plot函数里,散点图类型'scatter'也要求数字型的,用时间类型的会报错。...在搜索阅读了几十篇网文后,摸索出画散点图的简单办法。可以使用pyplot的plot_date()画散点图。...ax = plt.gca() ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d %H:%M')) #设置时间显示格式...ax.xaxis.set_major_locator(AutoDateLocator(maxticks=24)) #设置时间间隔 plt.xticks(rotation
在python中画散点图主要是用matplotlib模块中的scatter函数,先来看一下scatter函数的基本信息。...网址为:点击打开链接 可以看到scatter中有很多参数,经常使用的参数主要有以下几个: c: marker: 数据、代码和绘制的图如下。...数据(取第一列作为x,取第四列作为y)截图: 代码如下: import matplotlib.pyplot as plt import numpy as np # 定义画散点图的函数 def...Result Analysis') # 设置横坐标名称 ax1.set_xlabel('gamma-value') # 设置纵坐标名称 ax1.set_ylabel('R-value') # 画散点图...5, xmin=0) # 显示 plt.show() # 主模块 if __name__ == "__main__": # 运行 draw_scatter(n=2000, s=20) 绘制的图如下
R语言绘制基因表达基因的“对称散点图 转录组分析中,计算了两组间差异表达的基因后,通常怎样表示?您可能第一时间想到可以使用火山图。...接下来通过该示例文件,展示使用R语言绘制差异基因表达“对称散点图”过程。 2 数据预处理 首先对数据做一些预处理。...我们使用ggplot2的方法绘制差异基因散点图。...#绘制散点图,显著上、下调基因以不同颜色区分 library(ggplot2) ggplot(express, aes(x = control, y = treat)) + geom_point(aes...4 绘制差异基因散点图,颜色表示p值 上图中没有将p值信息展示出。因此另一种思路是,颜色代表p值,这样就可以在图中获得一个渐变梯度。
None, linewidths=None, verts=None, edgecolors=None, *, data=None, **kwargs) x,y:表示的是大小为(n,)的数组,也就是我们即将绘制散点图的数据点...默认是蓝色'b',表示的是标记的颜色,或者可以是一个表示颜色的字符,或者是一个长度为n的表示颜色的序列等等。但是c不可以是一个单独的RGB数字,也不可以是一个RGBA的序列。...labelMat.append(float(curLine[-1])) return dataMat,labelMat xArr,yArr=loadDataSet("ex0.txt") 然后我们就可以开始绘制散点图了...1、一般绘制方式: import matplotlib.pyplot as plt plt.scatter(xArr,yArr) plt.show() ?
❝本节来介绍一个小案例,如何绘制趋势变化散点图,数据主要展示世界主要国家近70年间GDP收入与lifeExp之间的关系,通过时间趋势的变化来更加直观的查看结果。...plot.margin = margin(10,60,10,10), legend.position = "non") ❝通过结果可以看出北欧等发达国家收入较高人均预期寿命也比较高,此图适用与有时间趋势变化的数据
一、简单散点图 1.代码 import numpy as np import matplotlib.pyplot as plt #生成散点数据 n = 1024 X = np.random.
01 安装 你可以使用github 命令直接安装neat命令 github install haghish/neat 关于如何使用github命令下载github站点上的Stata命令,可以详见爬虫俱乐部推文...《SSC的好兄弟“github”》 02 scatter散点图 首先我们加载命令的作者提供给我们的示例数据集,使用它来绘制散点图。...首先使用scatter命令绘制散点图 scatter v1 v2 得到图片如下 散点图已经绘制出来了,但咱们仔细数一数发现,图中只有29个散点,而数据集却有60个观测值,这是因为存在很多重复观测值的情况...03 neat命令绘制重合散点图 使用neat命令绘制可以显示重复观测值的散点图,其实非常地简单,只需要在scatter命令之前,加上一句neat命令即可。..., clear neat v1 v2 , msize(1.1) xsize(6.5) scatter v1 v2, msize(1.1) xsize(6.5) 这样一个小巧方便的命令完美地解决了一个绘制散点图时遇到的烦恼
上篇文章介绍了使用matplotlib绘制折线图,参考:Python matplotlib绘制折线图,本篇文章继续介绍使用matplotlib绘制散点图。...一、matplotlib绘制散点图 # coding=utf-8 import matplotlib.pyplot as plt years = [2009, 2010, 2011, 2012, 2013...上面的代码已经实现了简单的散点图,但只把点绘制出来了,很多信息都不完整,所以需要进行优化。...在调用scatter()函数绘制散点图时,使用c='颜色'来设置点的颜色,使用s='大小'来设置点的大小,并设置label用于图例展示。...在散点图中,我绘制了两条曲线,y=2^x和y=x^(3.3),一条是2为底的指数函数,一条是x的3.3次方(三次函数ax^3+bx^2+cx+d),可以看到双11总成交额的变化趋势更接近三次函数。
引言 本期推文的主要内容是散点图的绘制教程,所使用的数据关于全球教育水平划分的师生比例,涉及到的包主要为matplotlib和seaborn,当然用于数据处理分析的pandas和 numpy也必不可少...数据处理 2.1 原始数据 本文涉及的数据主要包括两种,一种为全球各大洲的网格数据,用于绘制另类散点图例,一种为全球各州的教育水平的师生比例,用于散点图的绘图。...(3)绘制大散点图 region_y = { 'Africa':1, 'Oceania':2, 'Asia':3, 'South America':4, 'North...可视化绘制 本文的可视化绘制过程涉及seaborn的stripplot()方法,所需的库、总体设置及用于绘制“抖动”的散点图(类似ggplot2的position_jitter()),其目的就是为了防止散点重叠...如果没用采用地图图例的绘制,而是一般的散点图图例,效果如下: ?
欢迎关注R语言数据分析指南 ❝本节来介绍一个案例使用「gggibbous」包绘制月亮散点图,下面小编就通过一个案例来进行展示数据为随意构建无实际意义仅作图形展示用,添加了详细的注释希望各位观众老爷能够喜...将x数据框中每个元素的半径信息存储在'r'列中 return(x) }) packing <- rbindlist(packing) # 数据合并 数据可视化 ggplot() + # 添加散点图图层
今天我们给大家介绍一个绘制抖动散点图的R包ggbeeswarm,但是呢,如果真正多样化绘制还需要ggplot2的协助。...那么也就是我们需要两个包来完成我们抖动散点图的绘制:ggbeeswarm和ggplo2。具体安装我们不再赘述,ggplot2的使用可以参考我们前面的《R语言绘图之ggplot2》。...接下来我们看下是如何绘制,首先我们准备好前期工作包的载入以及数据的生成。...library(ggplot2) library(ggbeeswarm) set.seed(12345) n<-100 dat<-rnorm(n*2) 接下来我们绘制简单的抖动散点图: labs散点图不是所有的都会绘制出来很好看,这就需要我们自己去实践,下面是对不同个数样本的数据的绘制,到时候可以根据自己的数据选择是否适合,毕竟美观才是我们的目的。
参考链接:https://blog.csdn.net/m0_67790374/article/details/124137448
本文介绍基于Python中gdal模块,对大量多时相栅格图像,批量绘制像元时间序列折线图的方法。 ...我们希望分别针对这三个文件夹中的多张遥感影像数据,随机绘制部分像元对应的时间序列曲线图(每一个像元对应一张曲线图,一张曲线图中有三条曲线);每一张曲线图的最终结果都是如下所示的类似的样式,X轴表示时间节点...这里请注意,在运行代码前我们需要在资源管理器中,将上述三个路径下的各文件以“名称”排序的方式进行排序(每一景遥感影像都是按照成像时间命名的)。...在代码的下一部分(就是hants_file_list开头的这一部分),我们是通过截取文件夹中图像的名称,来确定后期我们生成的时间序列曲线图中X轴的标签(也就是每一个x对应的时间节点是什么)——其中,这里的...最终,我们得到的多张曲线图结果如下图所示,其文件名通过列号与行号分别表示了当前这张图是基于哪一个像元绘制得到的;其中,每一张图的具体样式就是本文开头所展示的那一张图片的样子。 至此,大功告成。
import matplotlib.pyplot as plt import numpy as np x = ["hubei","huangshi","wuh...
散点图 散点图在生物信息分析中是应用比较广的一个图,常见的差异基因火山图、功能富集分析泡泡图、相关性分析散点图、抖动图、PCA样品分类图(后续推出)等。凡是想展示分布状态的都可以用散点图。...横纵轴都为数字的散点图解析 绘制散点图的输入一般都是规规矩矩的矩阵,可以让不同的列分别代表X轴、Y轴、点的大小、颜色、形状、名称等。...0.973987 4.829824e-01 Unchanged - 6 E00017 -1.302050 5.556939e-04 Baodian_UP B 绘制散点图...盗取火山图绘制一文中的图来显示个真正的火山图吧。这样一步步绘制很麻烦,去看一步法吧。 ?...一网打进散点图绘制 假如有一个输入数据如下所示(存储于文件scatterplot.xls中) Samp Gene1 Gene2 Color Size GC_quality
如果我们将气泡图的三维数据绘制到三维坐标系[1]中,通常称其为三维散点图,即用在三维X-Y-Z图上针对一个或多个数据序列绘出三个度量的一种图表。...plot3D包的scatter3D()函数等都可以绘制三维散点图。...下面将从两个包的两个函数(scatter3D(),plot3d())入手,一步步带你完成三维散点图的绘制。本文内容丰富,希望大家都能学到自己想要的内容,学习不易,欢迎反馈建议。 本文框架 ?...绘制箱子型box = TRUE;旋转角度为theta = 60, phi = 20;透视转换强度的值为3d=3;按照2D图绘制正常刻度ticktype = "detailed";散点图的颜色设置bg="...同理,我们绘制出以鸢尾花不同类别作为第四个变量的三维散点图。通过该图可以清晰看到不同类别的鸢尾花特征非常不同。
引言 这篇推文还是python-matplotlib 散点图的绘制过程,涉及到的内容主要包括matplotlib ax.scatter()、hlines()、vlines()、text()、添加小图片和定制化散点图图例样式等...,结合 png::readPNG()和cowplot包的draw_image()就可完美绘制。...(4)第64-76行 对散点图图例的定制化设置。...总结 本片绘制推文还是灵活的使用python-matplotlib进行散点图的绘制,主要涉及的绘图技巧为:ax.scatter()、 hlines()、 vlines() 以及散点图例的定制绘制,其目的就是为了熟悉绘图技巧...后期推文会尽可能使用matplotlib绘制。ggplot2的可视化绘制图文后期也会跟上的,希望大家能够喜欢。能力有限,有错误或者不理解的地方可以后台交流或加入 DataCharm交流群进行讨论。
lstm时间序列预测模型 时间序列-LSTM模型 (Time Series – LSTM Model) Now, we are familiar with statistical modelling...现在,我们已经很熟悉时间序列的统计建模,但是机器学习现在非常流行,因此也必须熟悉某些机器学习模型。 我们将从时间序列域中最流行的模型开始-长短期记忆模型。...让我们根据回溯期的值将时间序列数据转换为监督学习数据的形式,回溯期的值本质上是指可以预测时间“ t”时的滞后次数。...So a time series like this − 所以这样的时间序列- time variable_x t1 x1 t2 x2 : : : : T xT When look-back...您可以运行下面给出的代码,并使用模型参数来查看结果如何变化。
如果你还不知道JFreechart的基本代码以及使用方式这里可以找到常用的demo示例[2] 下面介绍一下使用jfreechart绘制散点图的方法 import org.jfree.chart.ChartFactory
散点图用于描述两个连续性变量间的关系,三个变量之间的关系可以通过3D图形或气泡来展示,多个变量之间的两两关系可以通过散点图矩阵来展示。 1....(fit) 例如:使用mtcars数据集来绘制散点图: library(car) scatterplotMatrix( ~ mpg + disp + drat + wt, data = mtcars,...例如,使用hexbin()来绘制高密度散点图,六边形的颜色深度表示散点的密度。...三维散点图 三维散点图用于对三个变量之间的交互关系进行可视化,scatterplot3d包中的函数scatterplot3d(),可以用于绘制三维散点图: scatterplot3d(x, y=NULL...例如利用mtcars数据集,绘制wt,disp和mpg之间的三维散点图: install.packages("scatterplot3d") library(scatterplot3d) with(mtcars
领取专属 10元无门槛券
手把手带您无忧上云