大家好,又见面了,我是你们的朋友全栈君 用php计算两个指定的经纬度地点之间的距离,代码: /** *求两个已知经纬度之间的距离,单位为米 *@param lng1,lng2 经度 *@param lat1...,lat2 纬度 *@return float 距离,单位米 *@edit www.jbxue.com **/ function getdistance(lng1,lat1,lng2,lat2){ /...> 举例,“上海市延安西路2055弄”到“上海市静安寺”的距离: 上海市延安西路2055弄 经纬度:31.2014966,121.40233369999998 上海市静安寺 经纬度:31.22323799999999,121.44552099999998...几乎接近真实的距离了,看来用php计算两个经纬度地点之间的距离,还是靠谱的,呵呵。 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。...如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如何计算数组a = np.array([1,2,3,2,3,4,3,4,5,6])和数组b = np.array([7,2,10,2,7,4,9,4,9,8])之间的欧式距离?
物联网、大数据、云计算、人工智能之间的关系是紧密相连、相互促进的。这四者既有各自独立的技术特征,又能在不同层面上相互融合,共同推动信息技术的发展和应用。...云计算服务具有高可靠性、较好的通用性、较高的扩展性等特点,能够为用户提供灵活、高效、低成本的数据存储和计算服务。在物联网和大数据的背景下,云计算为海量数据的处理和分析提供了强大的支撑平台。...四者之间的关系 1.物联网为大数据提供数据来源:物联网通过各种传感器和智能设备收集了大量的实时数据,这些数据构成了大数据的重要组成部分。...2.大数据为云计算提供处理对象:云计算平台通过其强大的计算能力和存储能力,对大数据进行高效的处理和分析,挖掘出有价值的信息和知识。...所以,物联网、大数据、云计算、人工智能之间形成了相互促进、共同发展的关系。它们在不同的层面上相互融合,共同推动信息技术的创新和应用。
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...ignore_index 参数用于在追加行后重置数据帧的索引。concat 方法的第一个参数是要与列名连接的数据帧列表。 ignore_index 参数用于在追加行后重置数据帧的索引。...然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。
如何评价 如何衡量目标跟踪,需要从以下几个点出发: 所有出现的目标都要及时能够找到; 目标位置要尽可能与真实目标位置一致; 每个目标都应该被分配一个独一无二的 ID,并且该目标分配的这个 ID 在整个序列中保持不变...衡量单摄像头多目标跟踪位置误差的一个指标 表示 第 t 帧的匹配个数,对每对匹配计算匹配误差 表示第 t 帧下目标 与其配对假设位置之间的距离 MT 大多数跟踪(Mostly Tracked...这里需要注意的一点是:不管这条轨迹上 ID 如何的变化(比如预测的时候发生了变化),但只要还是这条轨迹占到真实轨迹的 80% 以上就可以认为是 MT。(下面这张图希望可以帮助理解) ? ?...就是一条轨迹被切断的次数,按照论文的意思,应该是从跟踪到被切断计算一次 Frag,从不被跟踪到被跟踪不计算 Frag,如下图,Frag 值计算一次(不知道理解得对不对?) ? ?...IDTP、IDFP 分别代表真正 ID 数和假正 ID 数,类似于混淆矩阵中的 P,只不过现在是计算 ID 的识别精确度 IDR:识别回召率 (Identification Recall) 是指每个行人框中行人
引言 图是计算机科学中一种重要的数据结构,用于表示各种关系和网络。在算法高级篇课程中,我们将深入探讨如何有效地表示和存储图,以及如何优化这些表示方法。...本文将详细介绍图的基本概念、不同的表示方法,以及如何在 Python 中实现它们。 ❤️ ❤️ ❤️ 1. 什么是图? 图是由节点(顶点)和它们之间的边组成的抽象数据结构。...它可以用来表示各种关系,例如社交网络中的朋友关系、城市之间的道路连接、计算机网络中的数据传输等。在图中,节点表示实体,边表示实体之间的关系。...以下是两种常见的图表示方法: 3.1. 临接矩阵表示 临接矩阵是一个二维数组,其中行和列分别表示图的节点。...使用示例 让我们通过一个简单的示例来演示如何在 Python 中表示图。我们将创建一个无向图,并使用邻接表表示法。
重要的是,要记住,Ayasdi 构造的拓扑模型假定给出了一个数据矩阵,以及数据集行的差异性或距离函数。通常,该距离函数是欧几里得距离,但是也可以选择其他距离函数,例如相关距离、各种角度距离等。...该子组可能通过先验信息得来,也可能通过在 M 矩阵中行的拓扑模型分割得来。...对于矩阵 M 中的每一列 c_i(即转置矩阵 M^T 的每一行),我们现在可以计算子组 G 中每一行的均值,即 c_i 的平均值。 我们将把它记为 fi,G。...对于这个数据集,数据矩阵中行集合的拓扑分析已经在 [1] 和 [2] 中进行了。 我们的拓扑模型展示如下。 ? 上图表明,拓扑模型包括一个很长的「树干」部分,然后分裂成两个「小枝」。...了解这些基因组需要使用各种基于网络的生物学通路分析的工具。 总而言之,我们已经展示了如何对数据集中的特征空间使用拓扑建模,而不是利用行集合直接从数据集寻找洞察。
这个在本系列: 写给设计师的人工智能指南:如何找出相似的文章 一文有所涉及,计算的是两个特征向量之间的余弦相似度。非常高效、简单的一个算法。 这里也要用到相似度的计算。...相似度是基于向量(Vector),计算两个向量的距离,距离越近相似度越大。...相似度有这些计算方法: 欧几里德距离 最初用于计算欧几里德空间中两个点的距离 皮尔逊相关系数 一般用于计算两个定距变量间联系的紧密程度 余弦相似度 广泛应用于计算文档数据的相似度 谷本系数 是 Cosine...相似度的扩展,也多用于计算文档数据的相似度 选择一种相似度计算方法,然后把所有物品或用户之间的相似度计算出来,接下来,我们就要找到物品或用户的相似邻居,进而推荐啦。...它需要输入训练矩阵,其中行表示用户,列表示项目。
,因为在下一步中将使用这个矩阵计算每个被检测到的人的新坐标,新坐标是帧中每个人的“ GPS”坐标,使用这些新坐标而不是使用原始基点结果更为准确,因为在透视图中当人们处于不同平面时,距离是不一样的,并且距相机的距离也不相同...通过获取两点之间的中点来计算边界框的质心,使用此结果,计算位于边界框底部中心的点的坐标,我认为这一点(称为“基点”)是图像中人坐标的最佳表示。 然后使用变换矩阵为每个检测到的基点计算变换后的坐标。...在每帧上调用此函数后,将返回一个包含所有新转换点的列表,从这个列表中,计算每对点之间的距离。...5.结果 回顾项目的工作原理: ·首先获取图的4个角点,然后应用透视变换获得该图的鸟瞰图并保存透视变换矩阵。 ·获取原始帧中检测到的每个人的边界框。...·计算这些框的最低点,最低点是位于人双脚之间的点。 ·对这些点应用变换矩阵,获取每一个人的真实“ GPS”坐标。
利用立体相机中的图像传感器对图像进行检测,利用雾传感器激活图像传感器,生成深度图来计算碰撞距离。采用去雾算法对基于区域协方差矩阵的显著性图像帧进行质量改进。在改进后的图像上实现了YOLO算法。...该方法在雾天条件下的准确性和适应性,有利于我们在此条件下更好地实现YOLO的融合。参考[3]提出了一种从立体传感器创建深度图来计算碰撞距离的方法。...提出的工作A、总览提出了一种在雾天条件下对遥感图像进行目标检测的方法,并给出了目标与观察者之间距离的计算方法。...f为摄像机的焦距,两台摄像机之间的距离用b表示。由式(1)可知,场景中一个坐标的深度与对应的图像坐标与其中心的距离差成反比。利用这些数据,我们得到了图像中所有像素的深度。?...这些特定类的概率显示在方框中,并描述了如何很好地预测考虑中的目标的方框位置。该神经网络有9个卷积层。在这些层之后,添加3个完全连接的层,使其更快。
实现步骤: 1.利用Open‑pose方法对视频中人体进行姿态估计,提取视频中每帧人体关节点位置坐标; 2.根据每帧人体关节点位置坐标,计算相邻两帧人体关节点距离变化量矩阵; 3.将视频进行分段,利用每段视频距离变化量矩阵生成视频特征...k个关节点归一化之后的坐标; (2)计算相邻两帧人体关节点距离变化量矩阵: (2a)根据相邻两帧的坐标矩阵Pn和Pn-1,计算相邻两帧关节点位置坐标变化量矩阵 (2b)根据关节点位置坐标变化量矩阵计算关节点距离变化量矩阵...3.根据权利要求1所述的方法,其中步骤(2a)中计算相邻两帧关节点位置坐标变化量矩阵按如下公式计算: 其中Pn和Pn-1分别表示前一帧和后一帧的关节点位置矩阵,dxk和dyk表示第k个关节点相邻两帧坐标变化量...但不同于传统的图结构数据,人体运动数据是一连串的时间序列,在每个时间点上具有空间特征,而在帧于帧之间则具有时间特征,如何通过图卷积网络来综合性的发掘运动的时空特征,是目前的行为识别领域的研究热点。...,并忽略掉那些模棱两可的帧,这是一种类似于lstem中的attention的机制,只不过注意力只放在了时域上。
3) 说了ORB-SLAM为什么要同时计算基础矩阵F和单应矩阵H的原因:这两种摄像头位姿重构方法在低视差下都没有很好的约束,所以提出了一个新的基于模型选择的自动初始化方法,对平面场景算法选择单应性矩阵,...我们在文章开头说过,单目初始化结果得到了三角测量初始化得到的3D地图点Pw,计算得到了初始两帧图像之间的相对位姿(相当于得到了SE(3)),通过相机坐标系Pc和世界坐标系Pw之间的公式,(参考[《像素坐标系...,每个关键帧都有相对该地图点的值(距离和角度)不一样的描述子,在这么多的描述子中,如何选取一个最能代表该点的描述子呢?...我们可以把两个值看成是两个二进制串,而描述两个二进制串之间的距离可以用汉明距离,指的是其不同位数的个数。这样,我们就可以求出两个描述子之间的距离了。...还要获得观测到该点的参考关键帧(即第一次创建时的关键帧),因为这里只是更新观测方向,距离还是用参考关键帧到该地图点的距离,体现在后面dist = cv::norm(Pos - pRefKF->GetCameraCenter
:从摄像设备中读入数据; 18、cvCreateVideoWriter:创建一个写入设备以便逐帧将视频流写入视频文件; 19、cvWriteFrame:逐帧将视频流写入文件; 20、cvReleaseVideoWriter...:求矩阵的逆; 56、cvMahalonobis:计算两个向量间的马氏距离; 57、cvMax:在两个数组中进行元素级的取最大值操作; 58、cvMaxS:在一个数组和一个标量中进行元素级的取最大值操作...:根据已给出的数据创建直方图; 176、cvNormalizeHist:归一化直方图; 177、cvThreshHist:直方图阈值函数; 178、cvCalcHist:从图像中自动计算直方图; 179...; 214、cvMahalanobis:计算Mahalanobis距离; 215、cvKMeans2:K均值; 216、cvCloneMat:根据一个已有的矩阵创建一个新矩阵; 217、cvPreCornerDetect...:计算用于角点检测的特征图; 218、cvGetImage:CvMat图像数据格式转换成IplImage图像数据格式; 219、cvMatMul:两矩阵相乘; ———————————————— 作者为CSDN
本文提出的方法计算关键帧的2D直方图,局部地图patch,并使用2D直方图的归一化互相关(normalized cross-correlation)作为当前关键帧与地图中关键帧之间的相似性度量。...通过LOAM将与新关键帧相对应的原始点云配准到全局地图中,以计算其2D直方图。将计算的2D直方图与数据库进行比较,该数据库包含由所有过去的关键帧组成的全局地图的2D直方图,以检测可能的闭环。...同时,将新的关键帧2D直方图添加到数据库中以供下一个关键帧使用。一旦检测到闭环,就将关键帧与全局地图对齐,并执行位姿图优化以校正全局地图中的漂移。...首先利用平面特征的方向向量来计算协方差矩阵 利用特征值分解协方差矩阵 利用特征向量得到旋转矩阵 算法二:计算关键帧的2D分布 输入关键帧F 输入2D线特征的分布和面特征的分布H_L,H_P 开始设置H_L...(2)地图对齐及优化成功检测到闭环后,执行地图对齐以计算两个关键帧之间的相对位姿。地图对齐问题可以看作是目标点云和源点云之间的配准。
首先,让我们看看我们的工具是什么。 计算机视觉 计算机视觉是一个跨学科领域,涉及计算机如何处理和(或)理解图像和视频。...导入依赖 import numpy as np import cv2 2.从本地环境加载视频并初始化数据 ap = cv2.VideoCapture('video6.mp4') ret = True frameCounter...矩阵,并且矩阵中的每个单元格都是图像中的像素(当然,对于彩色图像,我们拥有的尺寸比2大,但为简单起见,可以忽略)。...现在的诀窍是:如果在两帧之间,像素没有被修改,那么结果当然是0。两帧之间的像素如何变化?如果视频是完全静态的(图像中没有任何动静),则所有像素的每一帧之间的差将为0,因为没有任何更改。...另一种方法是计算机视觉方法,用于查找相机和图像中的对象之间的距离。然后,建立一个阈值,以将前景与背景分开。之后,可以使用与移除背景相同的蒙版,并引入一个新的蒙版。
最近,机器人领域开始利用云计算资源。云机器人利用云计算和大数据的进步,并具有开发新一代机器人应用程序的潜力。...令 表示当前帧的八叉树,令 为包含 3D 点数据的 的叶(体素),其中 d 是叶的密度。 中所有叶子的密度 是在熵之前计算的。我们遍历 的叶子并累积帧的总熵(算法 1)。...从每个点的特征向量 ,可以计算出一个对象的协方差 : 其中 是对象中的点数, 是点在对象列表中的索引, 是特征向量的平均值。 这些协方差矩阵表征对象并形成对其执行分类的描述符。...分类过程在协方差 和 之间的对数欧氏距离 上使用具有径向基函数 的支持向量机 (SVM) [11]。距离定义为协方差矩阵对数之差的 Frobenius 范数: 协方差描述符也用于逐帧跟踪对象。...具体来说,对于当前帧中的给定对象 ,我们从前一帧中选择对象 ,使得协方差矩阵之间的距离最小: 与使用其他跟踪方法相比,使用协方差描述符进行对象跟踪可以节省计算量。
考虑到这些因素,我们不再简单地使用相邻像素之间的微分,而是应用基于窗口的方法,假设窗口内的导数值相似。为窗口内每一对在水平和垂直方向上的导数值计算并求平均值,以减轻距离测量噪声的影响。...在每个像素的方位角和俯仰角的基础上,将用球坐标表示的法向量 转换为笛卡尔坐标 , ,其中 是转换矩阵。公式如下: 由于所有像素的转换矩阵保持恒定,通过预先计算并存储所有像素的转换矩阵来减少计算时间。...为了在结果法线云之间实现稳定的匹配,我们建立了满足以下两个条件的对:首先,点对之间的点到点距离在距离阈值内;其次,法线向量方向之间的差在角度阈值内。...每个对的残差成本函数计算为点到平面距离,目标帧相对于查询帧的相对位姿可以通过解决以下优化问题来计算: 得到相对位姿然后转换为相对位姿因子添加到因子图中。...这可以通过法线向量的主成分分析来获得,如下所示:首先计算法线向量的协方差矩阵C: 然后,使用特征值分解将协方差矩阵C分解为 ,其中V是由特征向量组成的矩阵,Λ是对角元素为特征值的矩阵: 其中 。
17、cvCreateCameraCapture:从摄像设备中读入数据; 18、cvCreateVideoWriter:创建一个写入设备以便逐帧将视频流写入视频文件; 19、cvWriteFrame:...:求矩阵的逆; 56、cvMahalonobis:计算两个向量间的马氏距离; 57、cvMax:在两个数组中进行元素级的取最大值操作; 58、cvMaxS:在一个数组和一个标量中进行元素级的取最大值操作...:根据已给出的数据创建直方图; 176、cvNormalizeHist:归一化直方图; 177、cvThreshHist:直方图阈值函数; 178、cvCalcHist:从图像中自动计算直方图; 179...; 214、cvMahalanobis:计算Mahalanobis距离; 215、cvKMeans2:K均值; 216、cvCloneMat:根据一个已有的矩阵创建一个新矩阵; 217、cvPreCornerDetect...:计算用于角点检测的特征图; 218、cvGetImage:CvMat图像数据格式转换成IplImage图像数据格式; 219、cvMatMul:两矩阵相乘; 发布者:全栈程序员栈长,转载请注明出处:https
三位重建流程 使用Kinect采集景物的点云数据,经过深度图像增强、点云计算与配准、数据融合、表面生成等步骤,完成对景物的三维重建。 ? 对获取到的每一帧深度图像均进行前六步操作,直到处理完若干帧。...点云配准 对于多帧通过不同角度拍摄的景物图像,各帧之间包含一定的公共部分。为了利用深度图像进行三维重建,需要对图像进行分析,求解各帧之间的变换参数。...深度图像的配准是以场景的公共部分为基准,把不同时间、角度、照度获取的多帧图像叠加匹配到统一的坐标系中。计算出相应的平移向量与旋转矩阵,同时消除冗余信息。...(3)全局配准(Global Registration) 全局配准是使用整幅图像直接计算转换矩阵。通过对两帧精细配准结果,按照一定的顺序或一次性的进行多帧图像的配准。...然后计算该体元中十二条棱和等值面的交点,并构造体元中的三角面片,所有的三角面片把体元分成了等值面内与等值面外两块区域。 最后连接此数据场中的所有体元的三角面片,构成等值面。
领取专属 10元无门槛券
手把手带您无忧上云