首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python入门之数据处理——12种有用的Pandas技巧

◆ ◆ ◆ 我们开始吧 从导入模块和加载数据集到Python环境这一步开始: ? # 1–布尔索引 如果你想根据另一列的条件来筛选某一列的值,你会怎么做?...# 7–合并数据帧 当我们需要对不同来源的信息进行合并时,合并数据帧变得很重要。假设对于不同物业类型,有不同的房屋均价(INR/平方米)。让我们定义这样一个数据帧: ? ?...# 12–在一个数据帧的行上进行迭代 这不是一个常用的操作。毕竟你不想卡在这里,是吧?有时你可能需要用for循环迭代所有的行。例如,我们面临的一个常见问题是在Python中对变量的不正确处理。...加载这个文件后,我们可以在每一行上进行迭代,以列类型指派数据类型给定义在“type(特征)”列的变量名。 ? ? 现在的信用记录列被修改为“object”类型,这在Pandas中表示名义变量。...◆ ◆ ◆ 结语 本文中,我们涉及了Pandas的不同函数,那是一些能让我们在探索数据和功能设计上更轻松的函数。同时,我们定义了一些通用函数,可以重复使用以在不同的数据集上达到类似的目的。

5K50

Pandas 数据分析技巧与诀窍

它将分为以下几点: 1、在Pandas数据流中生成数据。 2、数据帧内的数据检索/操作。...2 数据帧操作 在本节中,我将展示一些关于Pandas数据帧的常见问题的提示。 注意:有些方法不直接修改数据帧,而是返回所需的数据帧。...在不知道索引的情况下检索数据: 通常使用大量数据,几乎不可能知道每一行的索引。这个方法可以帮你完成任务。因此,在因此,在“数据”数据框中,我们正在搜索user_id等于1的一行的索引。...: 假设您想通过一个id属性对2000行(甚至整个数据帧)的样本进行排序。...让我用一个例子来演示如何做到这一点。我们有用户用分数解决不同问题的历史,我们想知道每个用户的平均分数。找到这一点的方法也相对简单。

11.5K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何成为Python的数据操作库Pandas的专家?

    下面我们给大家介绍Pandas在Python中的定位。 ? 01 了解Pandas 要很好地理解pandas,关键之一是要理解pandas是一系列其他python库的包装器。...pandas利用其他库来从data frame中获取数据。...03 通过DTYPES高效地存储数据 当通过read_csv、read_excel或其他数据帧读取函数将数据帧加载到内存中时,pandas会进行类型推断,这可能是低效的。...04 处理带有块的大型数据集 pandas允许按块(chunk)加载数据帧中的数据。因此,可以将数据帧作为迭代器处理,并且能够处理大于可用内存的数据帧。 ?...在读取数据源时定义块大小和get_chunk方法的组合允许panda以迭代器的方式处理数据,如上面的示例所示,其中数据帧一次读取两行。

    3.1K31

    告诉你怎么创建pandas数据框架(dataframe)

    标签:Python与Excel,pandas 通过前面的一系列文章的学习,我们已经学习了使用pandas将数据加载到Python中的多种不同方法,例如.read_csv()或.read_excel()。...基本语法 在pandas中创建数据框架有很多方法,这里将介绍一些最常用和最直观的方法。所有这些方法实际上都是从相同的语法pd.DataFrame()开始的。...图1 从列表中创建数据框架 从列表创建数据框架,开始可能会让人困惑,但一旦你掌握了窍门,它就会慢慢变得直观。让我们看看下面的例子。有两个列表,然后创建一个这两个列表的列表[a,b]。...现在,如果从该迭代器创建一个数据框架,那么将获得两列数据: 图6 从字典创建数据框架 最让人喜欢的创建数据框架的方法是从字典中创建,因为其可读性最好。...当我们向dataframe()提供字典时,键将自动成为列名。让我们从构建列表字典开始。 图7 于是,我们在这个字典里有两个条目,第一个条目名称是“a”,第二个条目名称是“b”。

    2K30

    Pandas系列 - 迭代

    迭代DataFrame 迭代DataFrame - 遍历数据帧 iteritems()示例 iterrows()示例 itertuples()示例 Pandas对象之间的基本迭代的行为取决于类型。...当迭代一个系列时,它被视为数组式,基本迭代产生这些值 注意: 不要尝试在迭代时修改任何对象。迭代是用于读取,迭代器返回原始对象(视图)的副本,因此更改将不会反映在原始对象上。...迭代DataFrame import pandas as pd import numpy as np N=20 df = pd.DataFrame({ 'A': pd.date_range(...DataFrame - 遍历数据帧 迭代器 details 备注 iteritems() 将列迭代(col,value)对 列值 iterrows() 将行迭代(index,value)对 行值 itertuples...() 以namedtuples的形式迭代行 行pandas形式 iteritems()示例 import pandas as pd import numpy as np df = pd.DataFrame

    65741

    独家 | 什么是Python的迭代器和生成器?(附代码)

    我喜欢它提供的灵活性和难以置信的功能。我喜欢深入研究Python的各种细微差别,并了解它如何应对不同的情况。 在使用Python的过程中,我了解到了一些功能,这些功能的使用与其简化的复杂度不相称。...如果你曾经在处理大量数据时遇到麻烦(谁没有呢?!),并且计算机内存不足,那么你会喜欢Python中的迭代器和生成器的概念。...以及我们的循环如何知道何时停止?进入到迭代器部分! 什么是Python迭代器? 迭代器是代表数据流的对象,即可迭代。它们在Python中实现了迭代器协议。这是什么?...在Python中创建一个迭代器 既然我们知道了Python迭代器是如何工作的,我们可以更深入地研究并从头开始创建一个迭代器,以更好地了解其是如何凑效的。...当你不得不处理庞大的数据集时,也许这个数据集有几千行数据点甚至更多。如果Pandas可以解决这一难题,那么数据科学家的生活将变得更加轻松。

    1.2K20

    Pandas 学习手册中文第二版:1~5

    由于创建此Series时未指定索引(接下来将要执行的操作),因此 pandas 自动创建一个整数索引,该索引的标签从 0 开始,对于每个数据项加 1。...以下是第二到第四行温度差值的切片: 可以使用.loc和.iloc属性检索数据帧的整个行。 .loc确保按索引标签查找,其中.iloc使用从 0 开始的位置。...代替单个值序列,数据帧的每一行可以具有多个值,每个值都表示为一列。 然后,数据帧的每一行都可以对观察对象的多个相关属性进行建模,并且每一列都可以表示不同类型的数据。...创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例...在创建数据帧时未指定列名称时,pandas 使用从 0 开始的增量整数来命名列。

    8.3K10

    针对SAS用户:Python数据分析库pandas

    我们将说明一些有用的NumPy对象来作为说明pandas的方式。 对于数据分析任务,我们经常需要将不同的数据类型组合在一起。...在SAS例子中,我们使用Data Step ARRAYs 类同于 Series。 以创建一个含随机值的Series 开始: ? 注意:索引从0开始。...它是SAS读.csv文件的几个方法之一。这里我们采用默认值。 ? 与SAS不同,Python解释器正常执行时主要是静默的。调试时,调用方法和函数返回有关这些对象的信息很有用。...另外,如果你发现自己想使用迭代处理来解决一个pandas操作(或Python),停下来,花一点时间做研究。可能方法或函数已经存在! 案例如下所示。...公司执行面临角色度过他的职业生涯。从技术架构师开始,最近担任顾问,他建议企业领导如何培养和成本有效地管理他们的分析资源组合。最近,这些讨论和努力集中于现代化战略,鉴于行业创新的增长。

    12.1K20

    利用Pandas数据过滤减少运算时间

    当处理大型数据集时,使用 Pandas 可以提高数据处理的效率。Pandas 提供了强大的数据结构和功能,包括数据过滤、筛选、分组和聚合等,可以帮助大家快速减少运算时间。...1、问题背景我有一个包含37456153行和3列的Pandas数据帧,其中列包括Timestamp、Span和Elevation。...我创建了一个名为mesh的numpy数组,它保存了我最终想要得到的等间隔Span数据。最后,我决定对数据帧进行迭代,以获取给定的时间戳(代码中为17300),来测试它的运行速度。...代码中for循环计算了在每个增量处+/-0.5delta范围内的平均Elevation值。我的问题是: 过滤数据帧并计算单个迭代的平均Elevation需要603毫秒。...对于给定的参数,我必须进行9101次迭代,这导致此循环需要大约1.5小时的计算时间。而且,这只是对于单个时间戳值,我还有600个时间戳值(全部需要900个小时才能完成吗?)。

    11510

    使用 Python 对相似索引元素上的记录进行分组

    在 Python 中,可以使用 pandas 和 numpy 等库对类似索引元素上的记录进行分组,这些库提供了多个函数来执行分组。基于相似索引元素的记录分组用于数据分析和操作。...在本文中,我们将了解并实现各种方法对相似索引元素上的记录进行分组。 方法一:使用熊猫分组() Pandas 是一个强大的数据操作和分析库。...语法 grouped = df.groupby(key) 在这里,Pandas GroupBy 方法用于基于一个或多个键对数据帧中的数据进行分组。“key”参数表示数据分组所依据的一个或多个列。...生成的数据帧显示每个学生的平均分数。...,我们讨论了如何使用不同的 Python 方法和库来基于相似的索引元素对记录进行分组。

    23230

    精通 Pandas 探索性分析:1~4 全

    一、处理不同种类的数据集 在本章中,我们将学习如何在 Pandas 中使用不同种类的数据集格式。 我们将学习如何使用 Pandas 导入的 CSV 文件提供的高级选项。...二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色...首先,我们将学习如何从 Pandas 数据帧中选择数据子集并创建序列对象。 我们将从导入真实数据集开始。...在 Pandas 数据帧中建立索引 在本节中,我们将探讨如何设置索引并将其用于 Pandas 中的数据分析。 我们将学习如何在读取数据后以及读取数据时在DataFrame上设置索引。...从 Pandas 数据帧中删除列 在本节中,我们将研究如何从 Pandas 的数据集中删除列或行。 我们将详细了解drop()方法及其参数的功能。

    28.2K10

    嘀~正则表达式快速上手指南(上篇)

    这一次,这个函数从第一个引号开始匹配。 请注意我们在第一个引号旁使用反斜杠。反斜杠是用于转义其他特殊字符的特殊字符。例如,当我们想使用引号作为字符串而不是特殊字符时,我们用反斜杠来表示转义:\"。...只是匹配模式有些许不同,让我们逐一攻破。 以下是如何匹配电子邮件地址的前面部分: ? 电子邮件总是包含@符号,让我们从它开始。电子邮件@符号之前的部分可能包含字母数字字符,\w 就派上用场。...数据帧或表格中的一列。...然而,由于数据集中有成千上万的电子邮件,打印出上千行到屏幕上会占据本教程页面。我们当然不想让你一遍又一遍地滚动成千上万行的结果。...因此,正如我们在本教程开始时所做的,我们打开并阅读了Corpus的较短版本。为了本次教程我们手工编写一点。你可以使用实际的数据集。

    1.6K20

    数据预处理

    这是任何数据科学家或数据工程师的 核心能力 ,你必须 能够在日常工作中操作,清理和构造 你的数据(除了期望这将充分利用你的 日常时间 !) 。 有很多不同的数据类型,它们需要做出 不同的处理 。...),如何从传感器(物理或概念) 等收集数据。如果你是从地面建立一个系统,这些都是问题,但你大部分时间都会遇到有人想要解决 可用 数据的现实问题。...考虑到准备过程的好处 / 成本与创建的业务价值,这些数据是否值得? - 从小开始 每次要尝试数据准备步骤时,处理 GB 数据都是愚蠢的。...只需使用数据的 小子集 (但请注意它们具有代表性,并抓住所有问题) 。请记住,如果你想尝试字符串清理,则无需在 10M 行上启动脚本。...希望你已经知道 Python,如果不是从那里开始(按照我在 ML 指南要求中建议的步骤) ,然后采取这个 初学者 Pandas 教程。

    1.3K00

    想让pandas运行更快吗?那就用Modin吧

    但是,当处理过于庞大的数据时,单个内核上运行的 Pandas 就会变得力不从心,人们不得不求助于不同的分布式系统来提高性能。然而,为了提高性能而做的这种权衡会带来陡峭的学习曲线。...本质上,用户只是想让 Pandas 运行得更快,而不是为了特定的硬件设置而优化其工作流。这意味着人们希望在处理 10KB 的数据集时,可以使用与处理 10TB 数据集时相同的 Pandas 脚本。...Modin 如何加速数据处理过程 在笔记本上 在具有 4 个 CPU 内核的现代笔记本上处理适用于该机器的数据帧时,Pandas 仅仅使用了 1 个 CPU 内核,而 Modin 则能够使用全部 4 个内核...当使用默认的 Pandas API 时,你将看到一个警告: dot_df = df.dot(df.T) ? 当计算完成后,该操作会返回一个分布式的 Modin 数据帧。...Modin 为用户处理所有的数据分区和重组任务,这样我们就可以集中精力处理工作流。Modin 的基本目标是让用户能够在小数据和大数据上使用相同的工具,而不用考虑改变 API 来适应不同的数据规模。

    1.9K20

    Python 人工智能:16~20

    除了时间序列分析外,Pandas 还可以执行更多功能,包括: 使用集成索引的数据帧操作 从各种不同的文件格式读取数据并将数据写入内存数据结构的方法 数据分类 数据筛选 缺失值估计 重塑和旋转数据集 基于标签的切片...在本节中,我们为如何使用 Pandas 从外部文件加载数据,如何将其转换为时间序列格式以及如何对其进行绘制和可视化奠定基础。...在下一节中,我们将继续学习 Pandas 库中可用的不同功能,例如过滤和求和,以及该功能如何帮助更好地分析和处理数据集。...正如我们在本节开头提到的,我们不建议您使用此代码来使用真实货币进行实际交易。 总结 在本章中,我们学习了如何构建序列学习模型。 我们了解了如何处理 Pandas 中的时间序列数据。...当我们观看实时视频流时,从该流捕获的连续帧之间的差异为我们提供了很多信息。 让我们看看如何获​​取连续帧之间的差异并显示差异。 本节中的代码需要连接的摄像头,因此请确保您的计算机上装有摄像头。

    4.9K20

    建立脑影像机器学习模型的step-by-step教程

    在本教程中,我们使用以下库: Pandas和numpy是被广泛使用的用于加载、操作和汇总数据的库。虽然pandas用于处理表格数据(例如,数据排列在表格中,有行和列),numpy是一个更通用的库。...因此,在开始编写代码文件时,最好先导入我们需要的所有库。...没有定义一个特定的种子值意味着依赖于这个随机性元素的变量在每次我们运行代码时都会有不同的表现。例如,每次迭代的训练测试分区将是不同的,这可能会导致不同的模型性能。...为了使这些代码更容易适应不同的格式,我们在代码的开头定义了我们的符号. 让我们从数据的前六行开始。使用pandas选择dataframe的子部分是很简单的。有不同的方法可以做到这一点。...对于这些特征,我们选择从第四列开始的所有行(回想一下,dataframes的索引是0),并将它们保存在features_df中。 清理后的数据集包含695个被试和169个特征。

    82150

    最近,又发现了Pandas中三个好用的函数

    近日,在github中查看一些他人提交的代码时,发现了Pandas中这三个函数,在特定场景中着实好用,遂成此文以作分享。...我个人总结为如下几个方面: 方便的以(columnName, Series)元组对的形式逐一遍历各行进行相应操作 以迭代器的形式返回,在DataFrame数据量较大时内存占用更为高效 另外,items是...示例DataFrame的各列信息 那么,如果想要保留DataFrame中各列的原始数据类型时,该如何处理呢?这就需要下面的itertuples。...由于行索引作为namedtuple中可选的一部分信息,所以与iteritems和iterrows不同,这里的返回值不再以元组队的形式显示行索引信息。...04 小结 以上就是本文分享的Pandas中三个好用的函数,其使用方法大体相同,并均以迭代器的形式返回遍历结果,这对数据量较大时是尤为友好和内存高效的设计。

    2K10

    Python 全栈 191 问(附答案)

    正则方法 match 与 search 有何不同? 如何使用正则表达式,匹配浮点数? 使用正则表达式,如何匹配出正整数?...使用 == 判断对象的相等性,需要区分哪些情况?编码实现:对象的 user_id 相等,则认为对象相等 yield 理解从哪四个方面入手? 函数带有 yield 便是生成器,那么它还是迭代器吗?...求两个特征的相关系数 如何找出 NumPy 中的缺失值、以及缺失值的默认填充 Pandas 的 read_csv 30 个常用参数总结,从基本参数、通用解析参数、空值处理、时间处理、分块读入、格式和压缩等...如何用 Pandas 快速生成时间序列数据?...Pandas 使用 apply(type) 做类型检查 Pandas 使用标签和位置选择数据的技巧 一个快速清洗数据的小技巧,在某列上使用 replace 方法和正则,快速完成值的清洗。

    4.2K20

    数据管道Dataset

    以下是一些构建高效数据管道的建议。 1,使用 prefetch 方法让数据准备和参数迭代两个过程相互并行。...2,使用 interleave 方法可以让数据读取过程多进程执行,并将不同来源数据夹在一起。 3,使用 map 时设置num_parallel_calls 让数据转换过程多进行执行。...4,使用 cache 方法让数据在第一个epoch后缓存到内存中,仅限于数据集不大情形。 5,使用 map转换时,先batch, 然后采用向量化的转换方法对每个batch进行转换。...1,使用 prefetch 方法让数据准备和参数迭代两个过程相互并行。 ? ? ? 2,使用 interleave 方法可以让数据读取过程多进程执行,并将不同来源数据夹在一起。 ? ?...3,使用 map 时设置num_parallel_calls 让数据转换过程多进行执行。 ? ? 4,使用 cache 方法让数据在第一个epoch后缓存到内存中,仅限于数据集不大情形。 ? ?

    1.9K20

    干货推荐:看过介绍 Python 迭代器和生成器最易懂、最全面的文章

    和可迭代对象不同,可迭代对象一开始是把所有的列表放在一个变量中,然后用 getitem 方法不断的返回数值,getitem 中的 item 就是索引值。...Python 的堆栈帧是分配在堆内存中的,理解这一点非常重要!Python 解释器是个普通的 C 程序,所以它的堆栈帧就是普通的堆栈。但是它操作的 Python 堆栈帧是在堆上的。...除了其他惊喜之外,这意味着 Python 的堆栈帧可以在它的调用之外存活。(FIXME: 可以在它调用结束后存活),这个就是生成器的核心原理实现。...生成器可以在任何时候被任何函数恢复执行,因为它的栈帧实际上不在栈上而是在堆上。生成器在调用调用层次结构中的位置不是固定的,也不需要遵循常规函数执行时遵循的先进后出顺序。...文件 a.txt 是一行文字,但是特别长,这一行文字根据|符号分开,如何读取?

    57741
    领券