首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

安利一个Python大数据分析神器!

Pandas和Numpy大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合RAM,这时候Dask来了。 Dask是开源免费的。...官方:https://dask.org/ Dask支持Pandas的DataFrame和NumpyArray的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。...Dask的使用是非常清晰的,如果你使用NumPy数组,就从Dask数组开始,如果你使用Pandas DataFrame,就从Dask DataFrame开始,依此类推。...之所以被叫做delayed是因为,它没有立即计算出结果,而是将要作为任务计算的结果记录在一个图形中,稍后将在并行硬件上运行。...另外,如果添加以下代码可以连接到集群,通过Client可以展示整个计算过程的dashboard,由Bokeh实现。

1.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    numpy通用函数:快速的逐元素数组函数

    本文将深入探讨NumPy通用函数,揭示它们在数组操作中的巧妙之处,并演示如何通过它们轻松实现快速的逐元素数组函数。...NumPy通用函数的使用 NumPy通用函数具有一般函数的特性,它可以对数组中的每个元素进行相同的操作,并返回一个新的数组作为结果。...通过讲解其使用方法,读者可以理解如何将现有的Python函数与NumPy的广播机制结合使用,从而实现更高效的数组处理。 d. 警告和最佳实践 : 强调在使用高级定制功能时需要注意的一些建议和最佳实践。...通过这些深入的讨论,读者可以更好地理解如何使用NumPy通用函数进行高度定制化的数组操作,以满足特定领域的需求,并且进一步提升他们的数值计算和数据科学技能。...通过深入理解NumPy通用函数,我们可以更加精准、高效地操作数组,从而提升代码的性能和可读性。希望本文为你揭示了新的技术视角,激发了你对NumPy的更深层次的探索。

    35510

    【深度学习基础】预备知识 | 数据操作

    使用过Python中NumPy计算包的读者会对本部分很熟悉。...除非额外指定,新的张量将存储在内存中,并采用基于CPU的计算。 x = torch.arange(12) x   可以通过张量的shape属性来访问张量(沿每个轴的长度)的形状(shape)。...对于将两个数组作为输入的函数,按元素运算将二元运算符应用于两个数组中的每对位置对应的元素。我们可以基于任何从标量到标量的函数来创建按元素函数。   ...这种机制的工作方式如下: 通过适当复制元素来扩展一个或两个数组,以便在转换之后,两个张量具有相同的形状; 对生成的数组执行按元素操作。   ...这是因为Python首先计算Y + X,为结果分配新的内存,然后使Y指向内存中的这个新位置。

    4600

    《Hello NumPy》系列-运算与函数应用

    正文 前面在创建 NumPy 数组的时候,通过创建方法可以发现有些类似于线性代数,比如创建的正态分布数组、对角数组等,也确实是这样,矩阵的一些特性 NumPy 同样具有。...不同大小数组之间的运算叫做广播。暂且不解释,我们下节专门说它。 再来看下矩阵运算 在线性代数中,有矩阵转置,在 NumPy 中,也就有了数组转置。...二元函数 add 将数组中对应的元素相加 二元函数 sutract 从第一个数组中减去第二个数组中的元素 二元函数...条件逻辑表述 我们都知道 Python 中的三元表达式: x if condition else y 那如果我们有两个值数组分别表示 x 和 y,有一个布尔数组表示 condition,如何进行条件逻辑表述呢...其中 x 和 y 不必是数组,也可以是标量值, where 函数返回一个新的数组。

    79120

    Python NumPy自定义数组容器

    为什么需要自定义数组容器 标准的 NumPy 数组是一个通用的多维数组结构,专注于高效的数值计算。...创建自定义数组容器 自定义数组容器通常通过继承 NumPy 的 ndarray 类实现。 基础实现:添加元数据 从一个简单的例子开始,为数组添加元数据支持。...例如,以下代码展示如何创建一个带统计功能的自定义容器: class StatisticalArray(CustomArray): def mean(self): # 计算均值...性能优化:自定义方法应充分利用 NumPy 的矢量化操作,避免引入性能瓶颈。 总结 自定义数组容器为 NumPy 提供了强大的扩展能力,使其在科学计算和数据分析中能够满足更多样化的需求。...本文详细介绍了自定义数组容器的基本实现方法,并通过实例展示了其在元数据存储、单位转换、日志记录和统计分析中的应用。

    8110

    Numpy 简介

    什么是NumPy? NumPy是Python中科学计算的基础软件包。...更改ndarray的大小将创建一个新数组并删除原来的数组。 NumPy数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。...换句话说,为了高效地使用当今科学/数学基于Python的工具(大部分的科学计算工具),你只知道如何使用Python的原生数组类型是不够的 - 还需要知道如何使用NumPy数组。...关于数组大小和速度的要点在科学计算中尤为重要。举一个简单的例子,考虑将1维数组中的每个元素与相同长度的另一个序列中的相应元素相乘的情况。...一般有6个机制创建数组: 从其他Python结构(例如,列表,元组)转换 numpy原生数组的创建(例如,arange、ones、zeros等) 从磁盘读取数组,无论是标准格式还是自定义格式 通过使用字符串或缓冲区从原始字节创建数组

    4.7K20

    在向量化NumPy数组上进行移动窗口操作

    它们也很容易在Python中实现。学习如何实现移动窗口将把你的数据分析和争论技能提升到一个新的水平。 什么是滑动窗? 下面的例子显示了一个3×3(3×3)滑动窗口。用红色标注的数组元素是目标元素。...这是滑动窗口将计算的新度量的数组位置。例如,在下面的图像中,我们可以计算灰色窗口中9个元素的平均值(平均值也是8),并将其分配给目标元素,用红色标出。...样例数组 ? 3x3的滑动窗口 创建一个NumPy数组 为了实现一些简单的示例,让我们创建上面所示的数组。首先,导入numpy。...通过循环实现滑动窗口 毫无疑问,你已经听说过Python中的循环很慢,应该尽可能避免。特别是在使用大型NumPy数组时。这是完全正确。...向量化滑动窗口 Python中的数组循环通常计算效率低下。通过对通常在循环中执行的操作进行向量化,可以提高效率。移动窗口矢量化可以通过同时抵消数组内部的所有元素来实现。 如下图所示。

    1.9K20

    Matplotlib 中文用户指南 3.2 图像教程

    这对交互性有很重要的影响。 对于内联绘图,在单元格下方的单元格中输出绘图的命令不会影响绘图。 例如,从创建绘图的单元格下面的单元格更改颜色表是不可能的。...如果你的数组数据不符合这些描述之一,则需要重新缩放它。 将 NumPy 数组绘制为图像 所以,你将数据保存在一个numpy数组(通过导入它,或生成它)。 让我们渲染它吧。...如果你在一个单元格中创建了imgplot,你不能在以后的单元格中调用set_cmap(),并且改变前面的绘图。 请确保你在相同单元格中一起输入这些命令。plt命令不会更改先前单元格的绘图。...In [15]: imgplot = plt.imshow(lum_img, clim=(0.0, 0.7)) 数组插值方案 插值根据不同的数学方案计算像素『应有』的颜色或值。...现在,当我们绘制它时,数据被放大为你屏幕的大小。 由于旧的像素不再存在,计算机必须绘制像素来填充那个空间。 我们将使用用来加载图像的 Pillow 库来调整图像大小。

    1.5K40

    Python NumPy内存模型及ndarray底层结构

    为了理解其内存模型的高效性,首先需要了解ndarray是如何在内存中存储数据的。...元数据(Metadata):用于存储数组的形状、数据类型、步长等信息,以便NumPy能够正确地解析数据缓冲区。 NumPy通过dtype来定义数组的元素数据类型。...内存中的dtype与shape dtype(数据类型)和shape(形状)是ndarray中两个重要的元数据: dtype:定义了每个数组元素的类型,例如int32、float64等。...:", small_float_array.nbytes, "字节") 使用广播机制 NumPy的广播机制可以在不创建新数组的情况下执行计算操作。...此外,还介绍了如何利用视图、高效的数据类型和广播机制优化内存与计算性能。 如果你觉得文章还不错,请大家 点赞、分享、留言 下,因为这将是我持续输出更多优质文章的最强动力!

    14810

    Python中的循环-比较和性能

    此外,根据《计算机编程艺术》中的Donald Knuth所说,“过早的优化是编程中所有(或至少其中大部分)邪恶的根源”。...换句话说,我们将采用两个大小相同的序列(列表或数组),并使用通过从输入中添加相应元素而获得的元素来创建第三个序列。...列表x和y是通过从r中随机选择n个元素获得的: n = 1_000 x, y = random.sample(r, n), random.sample(r, n) 让我们看看获取具有n个元素的新列表...一些更复杂的情况需要普通的for或while循环。 在NumPy中使用Python numpy是第三方Python库,通常用于数值计算。特别适合操纵数组。...此示例比具有100.000元素和单个循环的示例稍慢。这是所有三种方法的结论(列表理解,普通for和while循环)。 在NumPy中使用Python numpy非常适合与多维数组一起使用。

    3.4K20

    荣登Nature,时隔15年NumPy论文终发表!

    新智元报道 来源:Nature 编辑:小智、QJP 【新智元导读】在人工智能时代,NumPy可谓是家喻户晓。...灵活的NumPy数组 NumPy中的array是一种数据结构,可以有效地存储和访问多维数组(也称为张量) ,并支持各种科学计算。...在未来十年,NumPy的开发人员将面临几个挑战。 新的设备将会被开发出来,现有的专业硬件将面临摩尔定律逐渐失效的情况。将会有更多的数据科学从业者使用 NumPy以外的工具。...新一代语言、解释器和编译器,如 Rust55、 Julia56和 LLVM57,将创建新的概念和数据结构,来挑战NumPy的地位。...但不论如何,NumPy准备好了迎接这样一个不断变化的环境,并继续在交互式科学计算中发挥领导作用,不断满足下一个十年的科学计算需求。

    1.5K20

    NumPy 1.26 中文官方指南(二)

    如何从现有数据创建数组 这部分涵盖切片和索引、np.vstack()、np.hstack()、np.hsplit()、.view()、copy() 你可以轻松地从现有数组的一部分创建一个新数组。...如何获取唯一项和计数 本节包括 np.unique() 你可以通过np.unique轻松找到数组中的唯一元素。...如何从现有数据创建数组 本节涵盖 切片和索引,np.vstack(),np.hstack(),np.hsplit(),.view(),copy() 您可以轻松地从现有数组的部分创建新数组。...假设您创建了这个数组: >>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) 现在我们通过对a进行切片并修改b1的第一个元素来创建数组...如何获取唯一项和计数 本节介绍 np.unique() 你可以使用np.unique轻松找到数组中的唯一元素。

    35410

    python的高级数组之稀疏矩阵

    对于稀疏矩阵,采用二维数组的存储方法既浪费大量的存储单元来存放零元素,又要在运算中浪费大量的时间来进行零元素的无效运算。因此必须考虑对稀疏矩阵进行压缩存储(只存储非零元素)。...CSR、CSC是用于矩阵-矩阵和矩阵-向量运算的有效格式,LIL格式用于生成和更改稀疏矩阵。Python不能自动创建稀疏矩阵,所以要用scipy中特殊的命令来得到稀疏矩阵。...一维数组indptr(行偏移量):包含了证书使得indptr[i]是data中元素的索引,它是行i中的第一个非零元素。...Len(indice)==len(data)==nnz 备注:列索引表示数值所在的列号,从0开始。 数组data:包含矩阵中的非零元素,以行优先的形式保存。...用LIL格式更改和切割矩阵: LIL格式最适合切片的方法,即以LIL格式提取子矩阵,并通过插入非零元素来改变稀疏模式。

    2.9K10

    你每天使用的NumPy登上了Nature!

    它包含一个指向内存的指针和元数据,其中元数据用于解释存储在内存中的数据,例如“数据类型”,“形状”和“步幅”(图1a)。 图1 NumPy数组合并了几个基本的数组概念。...步幅(Stride)用于如何将线性存储的计算机内存解释为多维数组。它们描述了要在内存中在行与行之间或列与列之间跳转需要向前移动的字节数。...社区为填补这一空白所做的努力导致了新的数组实现方式的激增。例如,每个深度学习框架都创建了自己的数组。...在此示例中,在Dask数组上调用了NumPy的mean函数。调用通过分派到适当的库实现(在本例中为Dask),并产生一个新的Dask数组。将此代码与图1g中的示例代码进行比较。...在接下来的十年中,NumPy开发人员将面临若干挑战。将开发新的设备,并将发展现有的专用硬件,以满足摩尔定律日益减少的收益。将会有越来越多的数据科学从业人员,其中很大一部分将使用NumPy。

    3.1K20

    利用Python Numpy高效管理HDF5文件数据

    HDF5支持层次化结构,能够在单个文件中存储和管理大规模的多维数据集。Python中的Numpy库虽然以数值计算著称,但借助于外部库如h5py,可以轻松实现HDF5文件的读写操作。...本文将详细介绍如何使用Numpy结合h5py库读写HDF5文件,适合需要处理大规模数据集的用户。...创建HDF5文件并写入数据 先创建一个新的HDF5文件,并在其中保存Numpy数组作为数据集。...读取HDF5文件中的数据 可以通过h5py.File()打开现有的HDF5文件,并读取其中的数据集和组。...总结 本文详细介绍了如何使用Python的Numpy库结合h5py处理HDF5文件,涵盖了HDF5文件的创建、读写、压缩存储、分块访问等常见操作。

    25910

    Python 各显其能的列表

    内存视图 memoryview 是一个内置类,它能让用户在不复制内容的情况下操作同 一个数组的不同切片。 内存视图其实是泛化和去数学化的 NumPy 数组。...示例代码 通过改变数组中的一个字节来更新数组里某个元素的值 import array numbers = array.array('h', [-2, -1, 0, 1, 2]) memv = memoryview...在内存上的修改映射到了原始数据上 NumPy和SciPy 凭借着 NumPy 和 SciPy 提供的高阶数组和矩阵操作,Python 成为科学计 算应用的主流语言。...通过 NumPy,用户能对这些数据结构里的元素进行高效的操作。 SciPy 是基于 NumPy 的另一个库,它提供了很多跟科学计算有关的算 法,专为线性代数、数值积分和统计学而设计。...这三 个类的构造方法都有一个可选参数 maxsize,它接收正整数作为输入值,用来限定队列的大小。 但是在满员的时候,这些类不会扔掉旧的元 素来腾出位置。

    81020

    Python NumPy掩码数组masked array应用

    在数据分析和科学计算中,经常会遇到数据缺失、不完整或需要忽略某些值的情况。NumPy 提供了强大的掩码数组(masked array)功能,通过引入掩码机制,灵活地处理需要忽略或标记的数组元素。...掩码数组简介 掩码数组是 NumPy 的 numpy.ma 模块提供的特殊数组,其特点是为数组中的每个元素附加一个布尔掩码(mask)。...创建掩码数组 基本创建方法 掩码数组可以通过 numpy.ma.array 方法直接创建,并指定掩码: import numpy as np import numpy.ma as ma # 创建一个掩码数组...从现有数组创建 如果已有一个 NumPy 数组并需要为其添加掩码,可以使用 ma.masked_array 方法: # 从现有数组创建掩码数组 arr = np.array([10, 20, 30, -...1, 50]) masked_arr = ma.masked_array(arr, mask=arr < 0) print("从现有数组创建的掩码数组:\n", masked_arr) 输出: 从现有数组创建的掩码数组

    13210
    领券