首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何防止使用onClick对我的数组进行重复混洗

使用onClick对数组进行重复混洗的问题可以通过以下几种方式来防止:

  1. 添加状态控制:可以通过在点击事件中添加一个状态控制变量,当点击事件触发时,先判断该变量的状态,如果为真,则执行混洗操作,同时将状态变量置为假,防止重复混洗。示例代码如下:
代码语言:txt
复制
let isShuffled = false;

function onClick() {
  if (!isShuffled) {
    // 执行数组混洗操作
    array.shuffle();
    isShuffled = true;
  }
}
  1. 使用函数节流:可以通过函数节流的方式来限制点击事件的触发频率,确保在一定时间内只能触发一次点击事件。这样可以避免快速点击导致的重复混洗问题。示例代码如下:
代码语言:txt
复制
let isThrottled = false;

function onClick() {
  if (!isThrottled) {
    // 执行数组混洗操作
    array.shuffle();
    isThrottled = true;
    setTimeout(() => {
      isThrottled = false;
    }, 1000); // 设置一定时间后重置节流状态
  }
}
  1. 禁用按钮:可以在点击事件触发后,将按钮设置为禁用状态,防止用户重复点击。示例代码如下:
代码语言:txt
复制
function onClick() {
  // 执行数组混洗操作
  array.shuffle();
  document.getElementById("shuffleButton").disabled = true;
}

以上是几种常见的防止使用onClick对数组进行重复混洗的方法,根据具体情况选择适合的方式来实现防止重复混洗的效果。

参考链接:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

如何在Python和numpy中生成随机数

伪随机性是看起来接近随机的数字样本,但是它是使用确定性的过程生成的。 使用伪随机数生成器可以混洗数据并用随机值初始化系数。这种小程序通常是一个可以调用的返回随机数的函数。...下面的示例演示了对伪随机数生成器进行播种,生成一些随机数,并显示重新播种生成器将导致生成相同的数字序列。...此函数使用单个参数来指定结果数组的大小。高斯值是从标准高斯分布中抽取的;这是一个平均值为0.0,标准差为1.0的分布。 下面的示例显示了如何生成随机高斯值数组。...混洗NUMPY数组 可以使用NumPy函数shuffle()随机混洗NumPy数组。 下面的示例演示了如何对NumPy数组进行随机混洗。...,然后随机混洗并打印混洗后的数组。

19.3K30

Adaptive and Robust Query Execution for Lakehouses at Scale(翻译)

(5.1节)如何利用在执行时发现的动态数据属性来进行进一步的查询优化?(5.2节)应该使用哪种连接算法?(5.3节)运行查询应采用什么样的并行度?...这个映射允许AQE框架将当前的逻辑计划与当前的物理计划同步,以便使用从运行时任务指标推断的最新统计信息对逻辑计划进行重新优化。...在我们的查询引擎中,混洗分区在分区编号上是物理连续的,允许“合并”操作在逻辑上进行,而无需额外读取或写入混洗数据。...6.2 规划器规则混洗消除回退 类似于SCOPE[47]中的混洗消除优化,我们的静态优化器也进行基于成本的混洗消除。在大多数情况下,较少的混洗往往会使查询运行得更快。...如图7(a)所示,这个高估导致静态优化器选择按R.a和S.a进行分区以执行混洗哈希连接,有效地消除了后续按进行的哈希聚合的混洗。

12010
  • 【Spark】Spark之how

    开销很大,需要将所有数据通过网络进行混洗(shuffle)。 (5) mapPartitions:将函数应用于RDD中的每个分区,将返回值构成新的RDD。 3....转换 - Value – 多RDD (1) union:生成一个包含两个RDD中所有元素的RDD。不会去重,不进行混洗。 (2) intersection:求两个RDD共同的元素的RDD。...会去掉所有重复元素(包含单集合内的原来的重复元素),进行混洗。 (3) subtract:返回一个由只存在于第一个RDD中而不存在于第二个RDD中的所有元素组成的RDD。不会去除重复元素,需要混洗。...Spark提供了两种方法对操作的并行度进行调优: (1) 在数据混洗操作时,使用参数的方式为混洗后的RDD指定并行度; (2) 对于任何已有的RDD,可以进行重新分区来获取更多或者更少的分区数。...序列化调优 序列化在数据混洗时发生,此时有可能需要通过网络传输大量的数据。默认使用Java内建的序列化库。Spark也会使用第三方序列化库:Kryo。

    94020

    卷积神经网络学习路线(十九) | 旷世科技 2017 ShuffleNetV1

    方法 针对组卷积的通道混洗 现代卷积神经网络会包含多个重复模块。...通道混洗的算法过程如下: 对一个卷积层分为g组,每组有n个通道 reshape成(g, n) 再转置为(n, g) Flatten操作,分为g组作为下一层的输入。...有通道混洗和没有通道混洗 Shuffle操作是为了实现多个组之间信息交流,下表表现了有无Shuffle操作的性能差异: ?...后面的我就不说了,都是一些速度和精度对比。...结论 论文针对现多数有效模型采用的逐点卷积存在的问题,提出了组卷积和通道混洗的处理方法,并在此基础上提出了一个ShuffleNet unit,后续对该单元做了一系列的实验验证,证明了ShuffleNet

    1K20

    Pyspark学习笔记(四)弹性分布式数据集 RDD(上)

    ④.分区 当从数据创建 RDD 时,它默认对 RDD 中的元素进行分区。默认情况下,它会根据可用内核数进行分区。...**重新分区**, PySpark 提供了两种重新分区的方式; 第一:使用repartition(numPartitions)从所有节点混洗数据的方法,也称为完全混洗, repartition()方法是一项非常昂贵的操作...第二:使用coalesce(n)方法**从最小节点混洗数据,仅用于减少分区数**。 这是repartition()使用合并降低跨分区数据移动的优化或改进版本。...()方法读取的内容就是以键值对的形式存在 DoubleRDD: 由双精度浮点数组成的RDD。...PySpark Shuffle 是一项昂贵的操作,因为它涉及以下内容 ·磁盘输入/输出 ·涉及数据序列化和反序列化 ·网络输入/输出 混洗分区大小和性能 根据数据集大小,较多的内核和内存混洗可能有益或有害我们的任务

    3.9K10

    为什么MobileNet及其变体如此之快?

    选自Medium 作者:Yusuke Uchida 机器之心编译 参与:Nurhachu Null、王淑婷 在本文中,作者对高效 CNN 模型(如 MobileNet 及其变体)中常用的组成模块进行了概述...另外,作者还对如何在空间和通道中做卷积进行了直观阐述。...这里,G 代表的是分组卷积中分组的数目,分组卷积通常与 ShuffleNet 中的通道混洗一起使用。 虽然不能用乘-加运算次数(MACs)来定义通道混洗的计算成本,但是这些计算应该是需要一些开销的。...G=2 的通道混洗的例子。没有进行卷积,只改变了通道顺序。 ? G=3 的通道混洗的例子。...这里的重要组成模块是通道混洗层,它「混洗」了分组卷积中的通道顺序。如果没有通道混洗,分组卷积的输出就无法在分组中利用,这会导致准确率的降低。

    93320

    Pyspark学习笔记(四)弹性分布式数据集 RDD 综述(上)

    ③创建空RDD 5、RDD并行化 6、PySpark RDD 操作 7、RDD的类型 8、混洗操作 系列文章目录: ---- # 前言 本篇主要是对RDD做一个大致的介绍,建立起一个基本的概念...**重新分区**, PySpark 提供了两种重新分区的方式; 第一:使用repartition(numPartitions)从所有节点混洗数据的方法,也称为完全混洗, repartition()方法是一项非常昂贵的操作...第二:使用coalesce(n)方法**从最小节点混洗数据,仅用于减少分区数**。 这是repartition()使用合并降低跨分区数据移动的优化或改进版本。...()方法读取的内容就是以键值对的形式存在 DoubleRDD: 由双精度浮点数组成的RDD。...PySpark Shuffle 是一项昂贵的操作,因为它涉及以下内容 ·磁盘输入/输出 ·涉及数据序列化和反序列化 ·网络输入/输出 混洗分区大小和性能 根据数据集大小,较多的内核和内存混洗可能有益或有害我们的任务

    3.9K30

    【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    当RDD不需要混洗数据就可以从父节点计算出来,RDD不需要混洗数据就可以从父节点计算出来,或把多个RDD合并到一个步骤中时,调度器就会自动进行进行"流水线执行"(pipeline)。...调优方法 在数据混洗操作时,对混洗后的RDD设定参数制定并行度 对于任何已有的RDD进行重新分区来获取更多/更少的分区数。...数据混洗与聚合的缓存区(20%) 当数据进行数据混洗时,Spark会创造一些中间缓存区来存储数据混洗的输出数据。...硬件供给 影响集群规模的主要这几个方面:分配给每个执行器节点的内存大小、每个执行器节点占用的核心数、执行器节点总数、以及用来存储临时数据的本地磁盘数量(在数据混洗使用Memory_AND_DISK的存储等级时...#####我是文章快结束的分割线#####   最后我们来讲讲Spark SQL,上一篇中我们已经总结了如何使用Spark读取和保存文件,涉及到了这部分内容,所以这一篇中只会简要的说明一下: 导入Spark

    1.8K100

    谷歌大脑新算法,不折腾TPU就能加快AI训练速度

    按照经典的训练pipeline,AI系统先读取并解码输入数据,然后对数据进行混洗,应用转换扩充数据,然后再将样本收集到批处理中,迭代更新参数以减少误差。...需要注意的是,有两个因素会影响在不同插入点处data echoing的表现: 在批处理前回放(echoing) 在批处理之前回放意味着数据是在样本级别而不是批处理级别重复和混洗的,这增加了临近批次不同的可能性...,代价是批次内可能会有重复的样本。...在数据扩增前回放 在数据增强之前进行回放,重复数据就可能以不同的方式转换,这样一来重复数据就会更像新数据。...效果如何 研究团队对这一方法进行了实验,他们选择了两个语言模型任务,两个图像识别任务和一个对象检测任务,AI模型都是用开源数据集训练的。 ?

    43020

    读书 | Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    当RDD不需要混洗数据就可以从父节点计算出来,RDD不需要混洗数据就可以从父节点计算出来,或把多个RDD合并到一个步骤中时,调度器就会自动进行进行"流水线执行"(pipeline)。...调优方法 在数据混洗操作时,对混洗后的RDD设定参数制定并行度 对于任何已有的RDD进行重新分区来获取更多/更少的分区数。...数据混洗与聚合的缓存区(20%) 当数据进行数据混洗时,Spark会创造一些中间缓存区来存储数据混洗的输出数据。...硬件供给 影响集群规模的主要这几个方面:分配给每个执行器节点的内存大小、每个执行器节点占用的核心数、执行器节点总数、以及用来存储临时数据的本地磁盘数量(在数据混洗使用Memory_AND_DISK的存储等级时...最后我们来讲讲Spark SQL,上一篇中我们已经总结了如何使用Spark读取和保存文件,涉及到了这部分内容,所以这一篇中只会简要的说明一下: 导入Spark SQL与简单的查询示例 ?

    1.2K60

    算法研习:机器学习中的K-Fold交叉验证

    在我们训练机器学习模型时,为提高模型拟合效果,经常使用K-Fold交叉验证,这是提高模型性能的重要方法。在这篇文章中,我们将介绍K-Fold交叉验证的基本原理,以及如何通过各种随机样本来查看数据。...使用shuffle = True,我们的random_state会对数据进行洗牌。否则,数据由np.random(默认情况下)进行混洗。...首先,StratifiedShuffleSplit对我们的数据进行洗牌,然后它还将数据拆分为n_splits部分。在此步骤之后,StratifiedShuffleSplit选择一个部分作为测试集。...然后重复n_splits-1次,以获得n_splits-1个测试集。如果我们查看下面的图片,使用相同的数据,4个测试集不会涵盖所有数据,即测试集之间存在重叠。 ?...因此,这里的差异是StratifiedKFold只是洗牌和分裂一次,因此测试集不重叠,而StratifiedShuffleSplit 每次在分裂之前进行混洗,并且它会分割n_splits 次以使测试集可以重叠

    2.4K10

    染色质免疫沉淀(ChIP)实验(附视频)

    它的基本原理是在活细胞状态下固定蛋白质 DNA 复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的 DNA 片段,通过对目的片断的纯化与检测...3000×g 离心 5min,弃掉培养基, 用适量预冷的 PBS 洗细胞,离心去除废液。重复用 PBS 洗细胞两次,小心悬浮。...另外,酶反应的条件比较温和,对 DNA 和DNA与蛋白的复合物的损伤较小,而且蛋白不易变性。...也可以将收集到的液体,重复洗离心柱,以提高 DNA 回收率。...疑问解答 DoctorA,我们在做 ChIP 实验时, 大家都说要做好对照实验的设计,那么对照该如何设计呢?

    2.4K22

    键值对操作

    大家好,又见面了,我是你们的朋友全栈君。 键值对 RDD 通常用来进行聚合计算。我们一般要先通过一些初始 ETL(抽取、转化、装载)操作来将数据转化为键值对形式。...Q:为什么分区之后userData就不会发生混洗(shuffle)了? A:先看一下混洗的定义:混洗是Spark对于重新分发数据的机制,以便于它在整个分区中分成不同的组。...然后通过对第一个 RDD 进行哈希分区,创建出了第二个 RDD。 (2)从分区中获益的操作 Spark 的许多操作都引入了将数据根据键跨节点进行混洗的过程。...而对于诸如 cogroup() 和join() 这样的二元操作,预先进行数据分区会导致其中至少一个 RDD(使用已知分区器的那个 RDD)不发生数据混洗。...RDD 还没有被计算出来,那么跨节点的数据混洗就不会发生了。

    3.5K30

    PyTorch进阶之路(二):如何实现线性回归

    另外,我们创建的是 numpy 数组,因为这是常用的操作训练数据的方式:将某些 CSV 文件读取成 numpy 数组,进行一些处理,然后再将它们转换成 PyTorch 张量,如下所示: ?...我们这一次使用 15 个训练样本,以演示如何以小批量的形式处理大数据集。...它还能提供其它效用程序,如数据的混洗和随机采样。 ? 数据加载器通常搭配 for-in 循环使用。举个例子: ? 在每次迭代中,数据加载器都会返回一批给定批大小的数据。...如果 shuffle 设为 True,则在创建批之前会对训练数据进行混洗。混洗能帮助优化算法的输入随机化,这能实现损失的更快下降。...之所以是「随机」,原因是样本是以批的形式选择(通常会用到随机混洗),而不是作为单独一个数据组。 ?

    1.1K30

    老虎斑马“杂交”长啥样?CVPR19论文提出纹理混合器,不同花纹实现丝滑过渡 | 开源

    铜灵 发自 凹非寺 量子位 出品 如何一键减少修图时的拼接感?不如看看这篇CVPR 19论文怎么说。...上图中,箭头和圆圈表示对张量数据的运算,背景颜色突出显示的是不同阶段的任务,梯形表示可训练的组件,如果名称能匹配得上则这些组件可共享权重。...考虑到潜在张量,Texture Mixer使用了3种直觉潜在空间运算:平铺(tiling)、插值(interpolation)和多级混洗(shuffling)。...三种运算方式各有任务,平铺运算用来将空间上的纹理扩展到任意大小,插值运算将两个及以上潜在域中纹理的结合在一起,多级混洗预算将将相邻潜在张量中的小方块互换减少重复,然后对这些新的潜在张量进行解码得到插值。...最后,研究人员利用地球纹理和动物纹理数据集对合成纹理的质量进行定量评估,加粗代表最好的结果,下划线代表第二好的结果,红色代表每个指标中很高的数值。

    72830

    python执行测试用例_平台测试用例

    大家好,又见面了,我是你们的朋友全栈君。 前言 通常我们认为每个测试用例都是相互独立的,因此需要保证测试结果不依赖于测试顺序,以不同的顺序运行测试用例,可以得到相同的结果。...这对于检测通过的恰好是有用的,因为它恰好在不相关的测试之后运行,从而使系统处于良好状态。 该插件使用户可以控制要引入的随机性级别,并禁止对测试子集进行重新排序。...,在存储桶中进行混洗,然后对存储桶进行混洗,设计原理如图 给定上面的测试套件,以下是一些可能生成的测试顺序中的两个: 可以从以下几种类型的存储桶中进行选择: class 测试将在一个类中进行混洗...,而各类将被混洗,但是来自一个类的测试将永远不会在其他类或模块之间运行来自其他类的测试。...none (已弃用) 禁用混洗。自1.0.4起不推荐使用,因为此插件默认不再重做测试,因此没有禁用的功能。

    2K30

    pytest文档58-随机执行测试用例(pytest-random-order)

    这对于检测通过的测试可能是有用的,因为该测试恰好在不相关的测试之后运行,从而使系统处于良好状态。 该插件允许用户控制他们想要引入的随机性级别,并禁止对测试子集进行重新排序。...,在存储桶中进行混洗,然后对存储桶进行混洗,设计原理如图 ?...可以从以下几种类型的存储桶中进行选择: class 测试将在一个类中进行混洗,而各类将被混洗,但是来自一个类的测试将永远不会在其他类或模块之间运行来自其他类的测试。 module 模块级别。...none (已弃用) 禁用混洗。自1.0.4起不推荐使用,因为此插件默认不再重做测试,因此没有禁用的功能。...,而不管改组存储桶类型如何。

    1.1K10

    干货分享 | 细胞铺板有哪些被忽略的小妙招? | MedChemExpress (MCE)

    细胞消化:将细胞进行传代,弃去培养基,取适量的 PBS 轻轻润洗 2-3 次,吸尽上清。...加入适量的完全培养基充分重悬细胞团块,轻轻吹打混匀后取 10 μL 细胞悬液与 10 μL 台盼蓝轻轻混匀,用细胞计数仪进行计数,再根据实验铺板密度的需要计算所需细胞悬液的体积。...盖上培养皿后沿着水平桌面采用“8”字法或者“十字”形轻轻摇晃培养皿,重复 5-6 次确保使细胞均匀分布在培养皿中,然后进行铺板操作[10]。 小贴士:如何铺的均匀?答:“8” 字法 or 十字混匀法。...十字混匀法:以 24 孔板为例,细胞铺完后,贴着水平桌面先上下移动,再左右移动,呈十字形状,重复 5-6 次。...小贴士:摇晃过程中应注意力度,防止培养基溅洒出来污染细胞哦~细胞易沉降,建议每铺一部分孔 (比如半块板),及时混匀预先配制的细胞悬液,然后继续铺板。

    10410
    领券