首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

《高效R语言编程》6--高效数据木匠

,stringi和stringr可以通过正则表达式更新脏字符串,assertive和assertr包可以在数据分析项目的一开始进行数据完整性的校验。...通常的数据清理是将非标准文本字符串转换成lubridate简介所描述的数据格式。vignette("lubridate") ? 整洁是个广泛的概念,也包括重构数据,以便有利于数据分析和建模。...改变列的分类 R对象的类是性能的关键,as.numeric()、data.matrix()等改变类,或者vapply(data, class,chracter(1))。...# 使用data.table()处理数据 是dplyr的替代,两个哪个好存在争议,最好学一个一直坚持下去。如果两个都是新手,推荐dplyr。...为了提升性能,可以设置键,类似数据库的主键,方便二进制算法提取目标子集行。 ?

1.9K20

R语言数据分析利器data.table包 —— 数据框结构处理精讲

将一个R对象转化为data.table,R可以时矢量,列表,data.frame等,keep.rownames决定是否保留行名或者列表名,默认FALSE,如果TRUE,将行名存在"rn"行中,keep.rownames...data.table,比as.data.table快,因为以传地址的方式直接修改原对象,没有拷贝 copy(x) 深度拷贝一个data.table,x即data.table对象。...data.table为了加快速度,会直接在对象地址修改,因此如果需要就要在修改前copy,直接修改的命令有:=添加一列,set系列命令比如下面提到的setattr,setnames,setorder等;...n列,.N(总列数,直接在j输入.N取最后一列),:=(直接在data.table上添加列,没有copy过程,所以快,有需要的话注意备份),.SD输出子集,.SD[n]输出子集的第n列,DT[,....x到之间的列作为子集,然后.SD 输出所有子集 DT[2:5, cat(y, "\n")] #直接在j 用cat函数,输出2到5列的y值 DT[, plot(a,b), by=x] #直接在j用plot

5.9K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【译文】怎样学习R(下)

    幸运的是,有几个R包可以提供很大的帮助: tidyr包允许你对数据进行整理,而数据的整理就是看哪一列的数据是变量,同时观察每一行的结果,其本身会把你原来得到的数据转换成易于操作的数据。...dplyr包在处理数据框的对象(在内存和外存中)的时候是一个非常棒的包,而且结合了直观形式的语法结构以加快运行速度。...这个过程注定是痛苦的,但是幸运的是,lubridate包让这样的过程变得简单一些。查看它的小插图可以让你怎样在你的逐日分析中使用lubridate包。 基本R包只能在有限条的性能中处理时间序列数据。...这个 Reporting with R Markdown 4小时的课程可以让你了解R mardown,而且此外,你可以使用这样不错的小抄作为你后续用到的资料。...RStudio也维护了一个重要的学习接口让你能开展事业Shiny,包括有一系列的视频教程(点击Shiny学习路线图的要点)。而且,更多尖端的话题也可获知,就让这些例子集那样。

    1.4K40

    R语言︱数据集分组、筛选(plit – apply – combine模式、dplyr、data.table)

    tapply 只对单字段分组适用,在进行双字段联合分组时其结果为二维矩阵,用户还需要进行复杂的处理才行,比如 tapply(orders$AMOUNT, orders[,c("SELLERID","CLIENT...##对于数据框 x是对象,subset是保留元素或者行列的逻辑表达式,对于缺失值用NA代替。 Select 是选取的范围,应小于x。...5、which定位函数 功能:返回服从条件的观测所在位置(行数),有一定的排序功能在其中。...(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列 四、dplyr与data.table data.table可是比dplyr以及python中的...data.table包提供了一个非常简洁的通用格式:DT[i,j,by],可以理解为:对于数据集DT,选取子集行i,通过by分组计算j。

    20.9K32

    R语言基因组数据分析可能会用到的data.table函数整理

    ,其它都加上双引号; sep 列之间的分隔符; sep2 对于是list的一列,写出去时list成员间以sep2分隔,它们是处于一列之内,然后内部再用字符分开; eol 行分隔符...,默认FALSE,像rbind一样,直接bind,当时TRUE的时候,至少要有一个对象的一列要存在行名; fill 如果TRUE,缺失的列用NA填充,这个时候bind的对象可以不同列数,并且use.names...自动设为TRUE,这个时候至少要有一个对象的一列要存在行名; idcol 产生一个index列,默认(NULL)不产生,如果idcol=TRUE,行名自动为.id,当然你也可以直接命名,比如idcol...,当是TRUE时,如果mult=“all”,返回两列,一列x列号,一列相对应的y,如果nomatch=NA,不匹配的返回y的NA,如果nomatch=0,则跳过该列,设置mult="first“,mult...=”last"则最后返回x一样的行数; verbose 当时TRUE的时候,工作台交互 chmatch 返回各字符串在第二个对象的首匹配位置,是match和%in%的加速版本。

    3.4K10

    「r」dplyr 里的 join 与 base 里的 merge 存在差异

    今天在使用连接操作时发现:虽然都是合并操作函数,dplyr 包里的 *_join() 和基础包里面的 merge() 存在差异,不同的数据结构,结果也会存在偏差。...相同的数据,不同的操作函数存在差异 在进行连接操作时,我们会发现 dplyr 的结果会报错!...一般工作情况下,不同的数据子集都存在可以连接的列,所以无论上述哪种方法都可以胜任工作。...但特殊情况下,即类似我上述构造的数据集:数据子集不是所有但两两之间都存在共有的列,但按照一定的顺序确实能够将其合并。...如果 be_join 不为空,进行如下的循环: 如果存在,则将这个子集和 to_join 按共同列合并 如果不存在,使用循环位移一位,将当前 be_join 的第 2 个子集移动为 第 1 个。

    1.6K30

    R语言 数据框、矩阵、列表的创建、修改、导出

    函数可以避免此前的错误adata.table = F)class(a)#但其不会有行名,且其会有一个data.table的数据结构多出来,可以设置data.table...行名、列名)dim为维度,对数据框使用,输出(行数,列数),nrow输出行数,ncol输出列数dim(df1)nrow(df1)ncol(df1)rowname输出行名,colname输出列名*注意没有..."s",善用Tab可以防止错误rownames(df1)colnames(df1)数据框取子集"$"取子集df1$gene为对数据框df1列名的向量取子集*输入df1$后按tab键可以输出待选的列名mean...(df1$score) #对取出的向量可以进行运算坐标取子集df1[2,2] #取出(行数,列数)的单元格df1[2,] #取出第二行的所有内容df1[,2] #取出第二列的所有内容,同df1$df1[...c(1,3),1:2] #取出第1、3行的1、2列数据,取多列的时候需要组织成合适的向量df1[,-ncol(df1)] #删去最后一列,"-"意义同向量列名或行名取子集df1[,"gene"] #取出列名为

    7.9K00

    R︱高效数据操作——data.table包(实战心得、dplyr对比、key灵活用法、数据合并)

    data.table包提供了一个非常简洁的通用格式:DT[i,j,by],可以理解为:对于数据集DT,选取子集行i,通过by分组计算j。...设置key的方式有很多种: 1、创建数据时直接设置key dt data.table(a=c('A','B','C','A','A','B'),b=rnorm(6),key="a") 2、setkey...3、第三种方式:key-merge setkey(DT,x) setkey(X,V1) merge(DT, X) 预先设置两个数据集的key后,也可以用比较常见的merge函数来进行数据合并。....SDcols常于.SD用在一起,他可以指定.SD中所包含的列,也就是对.SD取子集。...2016-11-28补充: 留言区大神给了一个比较好的选中列的方式,其中主要就是对with的使用: data.table取列时,可以用data[,1,with=FALSE]取data的第一列

    9.3K43

    5个例子比较Python Pandas 和R data.table

    data.table) melb <- fread("datasets/melb_data.csv") 示例1 第一个示例是关于基于数据集中的现有列创建新列。...示例2 对于第二个示例,我们通过应用几个过滤器创建原始数据集的子集。这个子集包括价值超过100万美元,类型为h的房子。...Price > 1000000 & Type == "h"] 对于pandas,我们提供dataframe的名称来选择用于过滤的列。...data.table中使用减号获得降序结果。 示例5 在最后一个示例中,我们将看到如何更改列名。例如,我们可以更改类型和距离列的名称。...inplace参数用于将结果保存在原始数据帧中。 对于data.table,我们使用setnames函数。它使用三个参数,分别是表名,要更改的列名和新列名。

    3.1K30

    Day4-5 R语言代码

    (2)在数据框类型数据的行取子集时、导入TXT文件时,注意一下数值型数据的行/中,有没有藏着字符型数据。马虎了就会影响后续数据处理。...可以让R不修改行列名字,PS:R语言中行列名字中不能有特殊字符; 2)row.names = 1”这个参数意思时不能把第一列作为行名;PS:R语言中行名不能重复,如果将有重复的A列设为行名,需要先不将...row.name参数添加进来,处理A列的重复值(去重复、两行取平均值合并为一行),再设置为行名。...3、libraryR包时,在error中, ‘ ’ 里面的内容经常就是依赖包的名字,需要重点关注。...4、本地安装,将R包zip文件下载下来,然后放在工作路径中 devtools::install_local(“xxxx.zip”) 5、window电脑可能会存在的权限问题 6、R包不会用,有作者的第一手教程

    26520

    R语言学习笔记之——数据处理神器data.table

    R语言作为专业的统计计算语言,数据处理是其一大特色功能,事实上每一个处理任务在R语言中都有着不止一套解决方案(这通常也是初学者在入门R语言时,感觉内容太多无从下手的原因),当然这些不同方案确实存在着性能和效率的绝大差异...data.table 1、I/O性能: data.table的被推崇的重要原因就是他的IO吞吐性能在R语言诸多包中首屈一指,这里以一个1.6G多的2015年纽约自行车出行数据集为例来检验其性能到底如何,...使用fread函数导入之后便会自动转化为data.table对象,这是data.table所特有的高性能数据对象,同时继承了data.frame传统数据框类,也意味着他能囊括很多数据框的方法和函数调用。...注意以上新建列时,如果只有一列,列名比较自由,写成字符串或者变量都可以,但是新建多列,必须严格按照左侧列名为字符串向量,右侧为列表的模式,当然你也可以使用第二种写法。...当整列和聚合的单值同时输出时,可以支持自动补齐操作。 当聚合函数与data.table中的分组参数一起使用时,data.table的真正威力才逐渐显露。 mydata[,.

    3.6K80
    领券