首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

美团外卖实时数仓方案整理

而且所有人都在申请资源,导致资源成本急速膨胀,资源不能集约有效利用,因此要思考如何从整体来进行实时数据的建设。 04 数据特点与应用场景 那么如何来构建实时数仓呢?...05 实时数仓架构设计 1. 实时架构:流批结合的探索 基于以上问题,我们有自己的思考。通过流批结合的方式来应对不同的业务场景。...阿里基于ADB的实时OLAP方案等。 2. 实时数仓架构设计 从整个实时数仓架构来看,首先考虑的是如何管理所有的实时数据,资源如何有效整合,数据如何进行建设。 从方法论来讲,实时和离线是非常相似的。...06 实时平台化建设 架构确定之后,我们后面考虑的是如何进行平台化的建设,实时平台化建设是完全附加于实时数仓管理之上进行的。...解决方案是可以按照不同的业务解构出来,还原到基础数据流层,根据业务的需要做成范式结构,按照数仓的建模方式进行集成化的主题建设。

77330
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    实时数仓:实时数仓3.0的演进之路

    下图是基于业界各大公司分享的实时数仓架构抽象的一个方案: 这套架构总体依然遵循标准的数仓分层结构,各种数据首先汇聚于ODS数据接入层。...基于Kafka+Flink的这套架构方案很好的解决了实时数仓对于时效性的业务诉求,通常延迟可以做到秒级甚至更短。...基于上图所示实时数仓架构方案,笔者整理了一个目前业界比较主流的整体数仓架构方案: 上图中上层链路是离线数仓数据流转链路,下层链路是实时数仓数据流转链路,当然实际情况可能是很多公司在实时数仓建设中并没有严格按照数仓分层结构进行分层...然而基于Kafka+Flink的实时数仓方案有几个非常明显的缺陷: **(1)Kafka无法支持海量数据存储。...这样的架构要成为一个可以落地的实时数仓方案,数据湖Iceberg是需要满足如下几个要求的: (1)支持流式写入-增量拉取。

    45010

    实时数仓

    背景说明         一方面互联网行业对实时化服务的要求日益增多,尤其在信息流,短视频应用最为显著,同时随着实时技术引擎的发展能够提供高效,稳定的实时数据服务能力。...另一方面初期实时计算都是以需求为导向,采用"一路到底"的开发模式,没有形成完整的,统一的,规范化的实时数据体系。 为了避免我们同事踩坑,总结自己的过往实时开发经验,梳理对应实时数据体系。 二....实时数仓技术架构和应用 根据离线数据的开发,过往实时开发经验,对应实时计算架构和分层如下图所示: image.png 通常离线数仓,采用空间换取时间的方式,所以层级划分比较多从而提高数据计算效率...;而对于实时数仓考虑时效,分层越少越好,减少分层也是为了减少中间流程出错的可能,主流的是数据接入 → 数据汇总 → 结果输出 这三层。...实时存储规范          实时数据输出是在线系统侧遵从业务方命名规范,如果是数据中心自己的存储,使用实时任务一致的命名规范。 四.

    1.4K20

    漫谈实时数仓

    实时数仓主要是为了解决传统数仓数据时效性低的问题,实时数仓通常会用在实时的OLAP分析、实时的数据看板、业务指标实时监控等场景。总之就是一句话:实时数仓是在离线数仓的基础上进一步满足时效性的要求。...实时数仓可能更偏向一个解决方案,不同行业不同业务场景,对实时数仓有不同选型。离线数仓与实时数仓都是数据仓库,离线分析一般会对大数据量进行批量处理,而实时一般会从大数据量中选小数据量进行处理。...这是之前做的一个对标,可以参考: 另外,现在阿里、腾讯、华为等都宣传的有自己的实时数仓解决方案,可以去官网看一下。...实时数仓挺火,但是应用场景可能也没有那么多,实时数仓整体上还处在初级发展阶段,即便是一些中大型企业,实时业务场景也不是很多,有的企业可能没有专门的实时数仓技术团队,或者团队规模很小,几十甚至上百人做离线数仓...实时数仓的展望 实时数仓未来会有以下发展趋势,一是云会是实时数仓的重要发展趋势,公有云可能更有成本优势。

    74140

    1.8万字详解实时数仓建设方案

    一、实时数仓建设背景 1. 实时需求日趋迫切 目前各大公司的产品需求和内部决策对于数据实时性的要求越来越迫切,需要实时数仓的能力来赋能。...二、实时数仓建设目的 1. 解决传统数仓的问题 从目前数仓建设的现状来看,实时数仓是一个容易让人产生混淆的概念,根据传统经验分析,数仓有一个重要的功能,即能够记录历史。...三、实时数仓建设方案 接下来我们分析下目前实时数仓建设比较好的几个案例,希望这些案例能够给大家带来一些启发。 1....1) 方案选型 那就看下我们多维实时数据分析系统的方案选型,选型我们对比了行业内的领先方案,选择了最符合我们业务场景的方案。...实时数仓部分,分为了接入层、实时计算层和实时数仓存储层。

    4K21

    实时数仓:Lambda架构

    实时数仓:Lambda架构 在某些场景中,数据的价值随着时间的推移而逐渐减少。所以在传统大数据离线数仓的基础上,逐渐对数据的实时性提出了更高的要求。...于是随之诞生了大数据实时数仓,并且衍生出了两种技术架构Lambda和Kappa。 Lambda架构 其中Lambda架构是较早的解决方案,使用流处理和批处理两种架构进行数据处理。...其中流处理部分负责实时数据的处理,但流处理因为数据可靠性并不高,所以需要批处理部分定期进行运算稽查。 流处理相当于作为临时视图存在,满足数据实时性要求。而准确数据以批处理计算为主。 ?...这样,实时系统与离线系统的结合,会给出更为出色的方案。 但Lmabda架构也有很明显的不足,首先同时维护两套系统,资源占用率高,其次这两套系统的数据处理逻辑相同,代码重复开发。

    2.1K22

    “实时数仓”若干问?

    近期接受ITPUB的专访,谈到关于实时数仓的若干问题。下面挑选其精华分享如下: 实时数仓、数据库、湖仓一体傻傻分不清?...我们可以通过大数据平台这个平台去自己灵活的组装成满足我们一个业务场景的一个具体的一个解决方案,它是这样的概念。也就是说大数据平台是一个通用化的技术平台。...这个时候就出现了我们的湖仓一体的这个技术。 4.湖仓一体 湖仓一体的技术就是融合的数据湖和数据仓库这两种技术,提供了一种大一统的一个解决方案。从更高的维度去看待我们企业内部的数据。...互联网行业,经过这么多年发展,对于数仓的使用经历从离线到流式到实时这一过程,这一演进过程也促进了实时数仓在互联网企业的发展。 不同行业、应用场景,在实时数仓方面的落地方案有哪些差异化特点?...您认为哪些业务场景更适合用实时数仓平台或者解决方案?自研和采购三方厂商服务都存在怎样的优缺点? 7 实时数仓,跟所有新技术一样,都有其长处和短板,而不是一种万能的方案,在具体实施上面要分场景。

    97520

    实时数仓:Kappa架构

    上一期讲了Lambda架构,对于实时数仓而言,Lmabda架构有很明显的不足,首先同时维护两套系统,资源占用率高,其次这两套系统的数据处理逻辑相同,代码重复开发。...它是随着流处理引擎的逐步完善后,由LinkedIn公司提出的一种实时数仓架构。 ?...但T-1的数据,是在0点之后通过ETL抽取到离线系统进行计算,而计算过程需要一段时间,假设凌晨2点计算完成,那2点之前的实时数据在计算时,使用的依然是T-2的旧维度数据。...这里的计算流向是:Kafka作为ODS层,存储实时数据;实时流计算任务从ODS获取数据进行计算,计算结果作为DWD层数据,写入到Kafka中存储,供下游实时计算,并且为了与离线系统保持一致,也会推送到离线系统中进行存储

    6.7K21

    实时数仓|基于Flink1.11的SQL构建实时数仓探索实践

    实时数仓主要是为了解决传统数仓数据时效性低的问题,实时数仓通常会用在实时的OLAP分析、实时的数据看板、业务指标实时监控等场景。...虽然关于实时数仓的架构及技术选型与传统的离线数仓会存在差异,但是关于数仓建设的基本方法论是一致的。...通过本文你可以了解到: 实时数仓的基本架构 实时数仓的数据处理流程 Flink1.11的SQL新特性 Flink1.11存在的bug 完整的操作案例 古人学问无遗力,少壮工夫老始成。...案例简介 本文会以电商业务为例,展示实时数仓的数据处理流程。另外,本文旨在说明实时数仓的构建流程,所以不会涉及太复杂的数据计算。为了保证案例的可操作性和完整性,本文会给出详细的操作步骤。...总结 本文主要分享了构建一个实时数仓的demo案例,通过本文可以了解实时数仓的数据处理流程,在此基础之上,对Flink SQL的CDC会有更加深刻的认识。

    1.8K30

    实时数仓混沌演练实践

    从投放管理平台的链路全景图来看,实时数仓是不可或缺的一环,可以快速处理海量数据,并迅速分析出有效信息,同时支持投放管理平台的手动控盘。...二、演练范围为了能更细致反应出混沌演练情况,根据演练的内容不同,将实时数仓混沌分为两部分:技术侧和业务侧。...本篇主要和大家分享基于业务侧的实时数仓混沌演练过程:1.编写演练SOPSOP是一种标准的作业程序,就是将某一事件的操作步骤和要求,进行细化、量化及优化,形成一种标准的操作过程,关于业务侧混沌,尤其是实时数仓数据相关的演练...我们也是第一次做,目前在业界也没有找到相关的演练指导参考,处于探索阶段,为了方便项目进度的顺利进行及后续演练操作更加规范、高效,在演练前期大家经过沟通、讨论后,项目前期梳理的SOP演练模板,如下:2.演练方案调研先收集实时数仓投放链路核心指标范围...测试人员组成蓝军:负责制定混沌演练方案,执行目标系统故障注入,详细记录演练过程;实时数仓开发为红军:负责发现故障、应急响应、排除故障,同时验证系统在不同故障场景下的容错能力、监控能力、人员响应能力、恢复能力等可靠性能力

    29320

    实时数仓项目架构分层

    一、滴滴实时数仓项目 在公司内部,我们数据团队有幸与顺风车业务线深入合作,在满足业务方实时数据需求的同时,不断完善实时数仓内容,通过多次迭代,基本满足了顺风车业务方在实时侧的各类业务需求,初步建立起顺风车实时数仓...数仓具体架构如下图所示: 从数据架构图来看,顺风车实时数仓和对应的离线数仓有很多类似的地方。例如分层结构;比如ODS层,明细层,汇总层,乃至应用层,他们命名的模式可能都是一样的。...但仔细比较不难发现,两者有很多区别: 与离线数仓相比,实时数仓的层次更少一些 从目前建设离线数仓的经验来看,数仓的数据明细层内容会非常丰富,处理明细数据外一般还会包含轻度汇总层的概念,另外离线数仓中应用层数据在数仓内部...,但实时数仓中,app应用层数据已经落入应用系统的存储介质中,可以把该层与数仓的表分离。...* 与离线数仓相比,实时数仓的数据源存储不同 在建设离线数仓的时候,目前滴滴内部整个离线数仓都是建立在 Hive 表之上。但是,在建设实时数仓的时候,同一份表,会使用不同的方式进行存储。

    88930

    离线数仓和实时数仓架构与设计

    前言:离线数仓和实时数仓架构与设计讲解 离线数仓和实时数仓架构与设计 一、数仓架构演变(场景驱动) 二、离线大数据架构 三、离线数仓分层 四、离线大数据架构典型案例 1、Lambda架构 1.Lambda...架构存在的问题 2、Kappa架构 1.Kappa架构典型案例 2.Kappa架构典型案例(一Kylin为例) 3.Kappa架构的重新处理过程 3、Lambda架构 vs Kappa架构的对比 4、实时数仓...vs 离线数仓 5、实际业务中如何选择呢 6、现状:混合架构大行其道 7、数仓的发展趋势 五、疑问解答与加群交流学习 一、数仓架构演变(场景驱动) 二、离线大数据架构 三、离线数仓分层 四、离线大数据架构典型案例...2、Kappa架构 1.Kappa架构典型案例 2.Kappa架构典型案例(一Kylin为例) 3.Kappa架构的重新处理过程 3、Lambda架构 vs Kappa架构的对比 4、实时数仓...vs 离线数仓 5、实际业务中如何选择呢 6、现状:混合架构大行其道 7、数仓的发展趋势 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/142435.html

    1.3K31

    大数据开发:离线数仓与实时数仓

    进入大数据时代,大数据存储的解决方案,往往涉及到数据仓库的选型策略。从传统时期的数据仓库,到大数据环境下的数据仓库,其核心的技术架构是在随着最新技术趋势而变化的。...数据仓库的概念,最早是在1991年被提出,而直到最近几年的大数据趋势下,实时数据处理快速发展,使得数据仓库技术架构不断向前,出现了实时数仓,而实时数仓又分为批数据+流数据、批流一体两种架构。...1、离线数仓 离线数仓,其实简单点来说,就是原来的传统数仓,数据以T+1的形式计算好放在那里,给前台的各种分析应用提供算好的数据。到了大数据时代,这种模式被称为“大数据的批处理”。...2、实时数仓 实时数仓最开始是在日志数据分析业务中被广泛使用,后来在各种实时战报大屏的推动,实时数仓开始应用。...实时数据计算好结果后,可以落地到各种数据库中,也可以直接对接到大屏进行展示。 3、大数据环境下的两种数仓架构 Lambda 架构 Lambda架构核心就三个:批数据处理层、流数据处理层和服务层。

    4.5K11
    领券