首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    携程如何从海量数据中构建精准用户画像?

    用户画像作为“大数据”的核心组成部分,在众多互联网公司中一直有其独特的地位。 作为国内旅游OTA的领头羊,携程也有着完善的用户画像平台体系。目前用户画像广泛用于个性化推荐,猜你喜欢等;针对旅游市场,携程更将其应用于“房型排序”“机票排序”“客服投诉”等诸多特色领域。本文将从目的,架构、组成等几方面,带你了解携程在该领域的实践。 1.携程为什么做用户画像 首先,先分享一下携程用户画像的初衷。一般来说,推荐算法基于两个原理“根据人的喜好推荐对应的产品”“推荐和目标客人特征相似客人喜好的产品”。而这两条都离不开用

    010

    Flume+Kafka+Spark Streaming实现大数据实时流式数据采集

    大数据实时流式数据处理是大数据应用中最为常见的场景,与我们的生活也息息相关,以手机流量实时统计来说,它总是能够实时的统计出用户的使用的流量,在第一时间通知用户流量的使用情况,并且最为人性化的为用户提供各种优惠的方案,如果采用离线处理,那么等到用户流量超标了才通知用户,这样会使得用户体验满意度降低,这也是这几年大数据实时流处理的进步,淡然还有很多应用场景。因此Spark Streaming应用而生,不过对于实时我们应该准确理解,需要明白的一点是Spark Streaming不是真正的实时处理,更应该成为准实时,因为它有延迟,而真正的实时处理Storm更为适合,最为典型场景的是淘宝双十一大屏幕上盈利额度统计,在一般实时度要求不太严格的情况下,Spark Streaming+Flume+Kafka是大数据准实时数据采集的最为可靠并且也是最常用的方案,大数据实时流式数据采集的流程图如下所示:

    02

    一个优秀的产品经理该如何做好数据分析?|数据分析

    这两年,随着大数据、精益化运营、增长黑客等概念的传播,数据分析的思维越来越深入人心。处于互联网最前沿的产品经理们接触了大量的用户数据,但是却一直困扰于如何做好数据分析工作。 那么产品经理该如何搭建自己的数据分析知识体系?数据分析的价值又在哪里?产品经理做数据分析有哪些具体的方法?又如何学习数据分析?本文将和大家分享一下这些问题。 数据分析体系:道、术、器 “道”是指价值观。产品经理要想是做好数据分析,首先就要认同数据的意义和价值。一个不认同数据分析、对数据分析的意义缺乏理解的人是很难做好这个工作的。 “术

    010

    你的每一次点击行为,是如何变成数据的?| 聊一聊互联网公司的内部数据采集

    数据是怎么来的? 在很多行业,数据都是人工收集来的,比如医学疾病数据、环境数据、经济数据等。数据的更新周期也比较长,比如年度、月度。 但互联网行业不一样,这个天然的流量行业,数据量巨大,更新周期按天就算长了,通常有小时级、分钟级、实时秒级,甚至来不及落入表中,直接对实时流数据就进行计算。 最后说的这种「流式计算」,之前介绍过:什么是流式计算 | 另一个世界系列,对数据流实时进行计算,不需要存储到表里,主要为了满足一些实时级的需求,比如实时监控、实时个性化推荐等。 不管是「流式计算」还是存储到表里再计算

    07
    领券