要是有兴趣还等不及更新的话,可以直接看原版书籍:https://serialmentor.com/dataviz/ 3. 一个堆叠条形图可视化的例子 在上面说到堆叠条形图的时候,我们说到,由于内部比例相对变化的问题。所以不建议用堆叠的条形图来可视化时间序列的数据。但是如果只有两个分组的话,那么就可以使用堆叠的条形图了。 例如在观察一个地方一段时间男女比例构成的时候,我们就可以使用堆叠的条形图的。 ? 对于一个连续性多分组的比例数据,如果使用堆叠的条形图的话,会是很多并排的条形,可视化效果不好。 这个时候我们就可以使用堆叠密度图来进行可视化。 例如我们在可视化健康状态和年龄的时候,其中年龄可以当作连续性变量,如下图所有,利用堆叠密度图的可视化效果还是不错的。 将比例分别可视化为总体的一部分 并排条形图的问题是,它们无法清晰地看到各个亚组相对于整体的变化,而堆叠式条形图的问题在于,由于它们具有不同的基线,因此无法轻松比较不同的条形图。
,有两点需要说明,一方面,在ggplot2绘图过程中均采用图层思想,将多个图形进行叠加和设置;另一方面,图层思想是通过代码中的加号(+)表现出来的。 前提是绘图数据已做了统计汇总); position:用于设置条形图的摆放位置,默认为'stack',表示绘制堆叠条形图;如果指定为'dodge',表示绘制水平交错条形图;如果为'fill',表示绘制百分比堆叠条形图 函数实现重排序)、数值标签的添加(代码中的geom_text函数)以及平均水平参考线的添加(代码中的geom_hline)。 如果绘图数据涉及的是双离散变量单数值变量或者双数值变量单离散变量时,也可以借助于geom_bar函数绘制堆叠条形图、百分比堆叠条形图、交错条形图和对比条形图。 然而,在实际的企业环境中,这样的图形出现的频次并不是很高,因为绝对数量的堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍的百分比堆叠条形图。
一键领取预热专享618元代金券,2核2G云服务器爆品秒杀低至18元!云产品首单低0.8折起,企业用户购买域名1元起…
此类议会数据通常以饼图的形式可视化。 ? 饼形图将一个圆圈分成多个切片,以使每个切片的面积与其所占总数的比例成比例。同样的,我们可以在矩形上执行相同的步骤,结果是堆积的条形图。 我们可以根据矩形是垂直还是水平分为,垂直堆叠的条形图或水平堆叠的条形图。 ? 进一步的,我们还可以将?的条形图的每一个小部分并排放置,而不是将它们堆叠在一起。 这种可视化功能可以更轻松地对这三个组进行直接比较。但是,在并排的条形图中,每个条形与总数的关系在视觉上并不明显。 ? 对于以上三种可视化比例的图形而言。基本上可以用下面的表格来说明其主要的适用标准。 一个并排条形图的例子 我们在上面提到过说,对于并排的条形图在进行不同比例之间的变化的比较时以及时间序列比较时是具有优势的。这里我们就用一个例子来说明这样可视化的好处。 而且由于条形跨年相对变化的关系,很难比较B,C和D公司跨年的市场份额, ? 对于此假设数据集,并排条形图是最佳选择。
解题不考虑兼容性,题目天马行空,想到什么说什么,如果解题中有你感觉到生僻的 CSS 属性,赶紧去补习一下吧。 不断更新,不断更新,不断更新,重要的事情说三遍。 5 的 stacking level 更高,所以叠得更高。 不过!不过!不过!重点来了,请注意,上面的比较是基于两个 div 都没有形成 堆叠上下文 这个为基础的。 此时,要对两者进行层叠排列,就需要 z-index ,z-index 越高的层叠层级越高。 堆叠上下文是HTML元素的三维概念,这些HTML元素在一条假想的相对于面向(电脑屏幕的)视窗或者网页的用户的 z 轴上延伸,HTML 元素依据其自身属性按照优先级顺序占用层叠上下文的空间。 在层叠上下文中,其子元素同样也按照上面解释的规则进行层叠。 特别值得一提的是,其子元素的 z-index 值只在父级层叠上下文中有意义。
04 数组变形 数组变形是指对给定数组重新整合各维度大小的过程,numpy封装了4类基本的变形操作:转置、展平、尺寸重整和复制。主要方法接口如下: ? vstack,row_stack,功能一致,均为垂直堆叠,或者说按行堆叠,axis=0 dstack,主要面向三维数组,执行axis=2方向堆叠,输入数组不足3维时会首先转换为3维,主要适用于图像处理等领域 stack,进行升维堆叠,执行效果与前几种堆叠方式基本不同,要求所有数组必须具有相同尺寸。 ;另外可设置排序算法,如快排、堆排或归并等 08 视图与拷贝 ? 类似的,np.sort(axis=0)必然是沿着行方向排序,也就是分别对每一列执行排序。 想必这样理解,应该不会存在混淆了。
不同点: 柱状图: 若分类字段,恰好是「时间序列」,此时建议使用柱状图,因为柱状图能更好地体现数据随时间的变化情况。 条形图: 若分类字段的字符长度较长,且数据的记录数大于12,此时建议使用条形图。 当既需要分析整体随时间的变化趋势,又要了解整体的各构成项随时间的变化情况时,应该使用【堆叠面积图】。 从其目的可以看出,堆叠面积图的分类字段(即时间序列),是按照时间的先后顺序排列的。 若整体的构成项过多,为了突出重点,需要对构成项进行重新归类,展示TOP5的分类,剩下则归为「其他」。 7.散点图 VS 气泡图 1)可视化目标 展示华为不同型号手机的售价和成本的分布。 当数据集数量过大时,不适合将全部数据点展示在散点图中,此时需要对总体进行抽样显示,通常采用分层抽样的方法进行,但是分层抽样的依据和影响因素需要依据具体的业务场景而定。 ,为了方便大家更快的获取信息,将图表对比部分进行了精简,参考如下: ? 赘述一句:可视化之前,最重要的是弄清楚可视化的目的是什么,你期望展示或探索数据的什么规律。
类别比较表包括: 1.条形图 2.分组的条形图 3.气泡图 4.多线形图 5.平行坐标图 6.项目符号图 排序 可以用排序图表呈现各个分析对象的名次。 用例包括: 选举结果排名 绩效统计排名 ? 排序图表包括: 1.有序条形图 2.有序柱形图 3.平行坐标图 占比图表 部分与整体之间的比较,显示了同一纬度下的数据占比情况。 用例包括: 不同产品收入占比分析 企业部门预算分析 ? 面积图 面积图有几种类型,包括堆叠面积图和重叠面积图: 堆叠面积图显示了多个数据类别(在同一时间段内)彼此堆叠 重叠面积图显示了多个数据类别(在同一时间段内)彼此重叠 这两个图的区别在于堆叠面积图是各个类别数据叠加显示 应该以对显示的数据有意义的方式进行约束。例如,如果图表的一个维度比另一个维度更重要,则可以将平移方向限制为仅该方向。 平移动作通常与缩放配对。 报告板应: 优先处理最重要的信息(使用布局) 显示一个焦点,该焦点根据层次结构(使用颜色,位置,大小和视觉权重)对信息进行优先级排序 ? 应根据对数据提出的问题对信息进行优先排序。
除此以外,groups参数可以对x进行分组,gcolor指定各个组的颜色,而cex则可以控制标签的尺寸。在这里我们仍将使用R内置的mtcars数据集来演示。 # 按照mpg进行排序, 利用cylinder这个变量进行分组和上色 # cylinder是指汽车的气缸数 # 这里需要新建变量color用来存储颜色信息 x <- mtcars[order(mtcars 1.3 绘制堆积条形图 # 绘制带有颜色和标签的堆积条形图 counts <- table(mtcars$vs, mtcars$gear) # 这里返回的counts是一个矩阵,行代表的是vs,它代表汽车的发动机类型 你可以使用均值、中位数和标准差等来绘制条形图,将aggregate()函数的结果传递到条形图barplot()里。 2. 在条带数目很多的情况下,条带的标签可能彼此之间有重叠而无法完整显示。 如果想是标签排版简洁且不重叠,可以使用cex.name=这个选项来使各个字体大小递减。当然你也可以使用一些其他的绘图参数来更好进行文字排版,比如par()函数的相关参数。
而本期作为*(在模仿中精进数据可视化)*系列的第二期,将带大家以纯Python的方式对加拿大米西索加城市温室气体排放研究报告中的如图1所示的可视化作品进行复刻,它对温室气体排放来源中,交通方面的各排放源排放比例进行可视化 「2 右侧类桑基图部分」 到了右侧,也是这张图中最有设计感的部分,它用类似桑基图的方式,将左图中交通下属的分类温室气体排放比例构成进行可视化,这也是本文的重点部分,我们可以利用matplotlib加上一点点简单的数学知识来复刻它 2.2.1 左侧柱状图部分 对于左侧的堆叠柱状图,其本质其实是两个堆叠起来的矩形,因此我们可以使用matplotlib.patches下的Rectangle来创建矩形。 其使用方法非常简单,只需要指定矩形「左下角坐标」,再填写矩形对应的「宽」与「高」即可自由创建矩形: 图2 我们参考原作品的背景色,以及左侧矩形对应y轴的真实数值,先把左侧的「堆叠柱状图」和「图床背景色 所示: 图10 而原作品中右侧并没有按照比例的降序排列,如果你想降序排列,只需要在创建data之后对数据框按照份额降序并重置index即可~,降序排列后再绘制的效果如图11所示: 图11 是不是舒服自然了很多了呢
除了条形图之外,我们还可以使用点图来进行可视化。这个点图是把点放到数量相对应的位置上来进行展示的。 ? 如果对于有多组类别的计数。我们可以使用分组或者堆叠的条形图来进行展示。 堆积的直方图 (Stacked histograms) 和重叠的密度曲线(overlapping densities) 可以对较小数量的分布进行更深入的比较,尽管堆积的直方图很难解释,最好避免。 脊线图 (峰峦图, Ridgeline plots) 可以替代小提琴图,并且在可视化随时间变化的分布时通常很有用。 ? 3 比例 我们使用饼图、并排的条形图以及堆叠的条形图来可视化比例。 堆叠的条形图对于每一部分的比较不是很容易区分,但是在比较多组比例的时候很有用。 ? 如果要进行多组比较的时候,这个时候饼图的空间往往就不够了。这个时候如果分组比较少的话,分组的条形图可以使用的。 另外,堆叠的条形图基本使用所有情况,如果是比例沿连续性变量进行变化的时候,使用堆叠的密度图是可以的。 ?
)系列的第二期,将带大家以纯Python的方式对加拿大米西索加城市温室气体排放研究报告中的如图1所示的可视化作品进行复刻,它对温室气体排放来源中,交通方面的各排放源排放比例进行可视化: ? 2 右侧类桑基图部分 到了右侧,也是这张图中最有设计感的部分,它用类似桑基图的方式,将左图中交通下属的分类温室气体排放比例构成进行可视化,这也是本文的重点部分,我们可以利用matplotlib加上一点点简单的数学知识来复刻它 2.2.1 左侧柱状图部分 对于左侧的堆叠柱状图,其本质其实是两个堆叠起来的矩形,因此我们可以使用matplotlib.patches下的Rectangle来创建矩形。 图2 我们参考原作品的背景色,以及左侧矩形对应y轴的真实数值,先把左侧的堆叠柱状图和图床背景色做好: import matplotlib.pyplot as plt from matplotlib.patches 图10 而原作品中右侧并没有按照比例的降序排列,如果你想降序排列,只需要在创建data之后对数据框按照份额降序并重置index即可~,降序排列后再绘制的效果如图11所示: ?
对于任何图形界面的框架而言,布局都是非常重要的一个组成部分。 它就像人体的骨骼、房屋的钢筋混凝土梁架,支撑起整个图形界面、条理好各个小部件的位置。 而 Kivy 也提供了不少的布局方式,供我们在使用 Kivy 开发跨平台的图形界面程序时使用。 ? 堆叠布局 堆叠布局 StackLayout 用于垂直或水平地排列小部件。 堆叠布局支持以下两种方式来控制小部件的排列: •lr-tb:从左到右,然后从上到下地排列;•tb-lr:从上到下,然后从左到右地排列; 通过布局的orientation来设置上述的堆叠方式,例如: StackLayout 上面介绍的几个图形界面布局实例均来自于觅道文档的在线教程《使用Kivy构建现代桌面GUI应用》,如果需要上述布局实例的代码,可以点击“阅读原文”进行查看。
当节点v 的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。 这一过程一直进行到已发现从源节点可达的所有节点为止。 ,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。 该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。 最优子结构性质为动态规划算法解决问题提供了重要线索。 2、子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。
当节点 v 的所有边都己被探寻过,搜索将回溯到发现节点 v 的那条边的起始节点。 这一过程一直进行到已发现从源节点可达的所有节点为止。 ,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。 该算法的输入包含了一个有权重的有向图 G,以及 G 中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。 最优子结构性质为动态规划算法解决问题提供了重要线索。 2、子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。
深度优先遍历图算法步骤: 1. 访问顶点v; 2. 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问; 3. 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。 该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。 最优子结构性质为动态规划算法解决问题提供了重要线索。 2. 子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。
布局(Layout)可以看成是D3对图形元素的一种排布方式,在绘制柱状图时,是在横平竖直的直角坐标系下,确定矩形的左上角坐标,就可以画出随着高度变化的一系列柱子,以体现数据值的差异,而如果要画饼图呢,有一列数据 根据图形语法,只需要将坐标系变成极坐标,一系列数据很容易对应为角度。 布局和比例尺一样,也属于一种映射,能够将我们提供的数据重新映射/变换成新格式,以便于在某些更特定的图表中的使用。 arcs绘制的饼图是经过排序的,饼图效果是从12点钟开始第一个楔形,顺时针从大到小排列,从上图也可看出,数据的索引没变,arcs[0]还是76,但起始角度为0的数据是90,因此可以重写一下pie函数pie = d3.pie().sort(null),会按照数据的顺序排列饼图的每个楔形。 0,76],[0,37],[0,90],[0,60],[0,50]], // [[76,113],[37,83],[90,143],[60,141],[50,110]] ] 基于这一格式的数据就可以绘制堆叠柱状图以及垂直的堆叠条形图
深度优先遍历图算法步骤: 1. 访问顶点 v; 2. 依次从 v 的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和 v 有路径相通的顶点都被访问; 3. 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。 该算法的输入包含了一个有权重的有向图 G,以及 G 中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。 最优子结构性质为动态规划算法解决问题提供了重要线索。 2. 子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。
深度优先遍历图算法步骤: 1. 访问顶点v; 2. 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问; 3. 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。 该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。 最优子结构性质为动态规划算法解决问题提供了重要线索。 2. 子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。
当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。 深度优先遍历图算法步骤: 访问顶点v; 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问; 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历 如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。 该算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。我们以V表示G中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u,v)表示从顶点u到v有路径相连。 最优子结构性质为动态规划算法解决问题提供了重要线索。 子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。
当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。 这一过程一直进行到已发现从源节点可达的所有节点为止。 ,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。 该算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。我们以V表示G中所有顶点的集合。 每一个图中的边,都是两个顶点所形成的有序元素对。(u,v)表示从顶点u到v有路径相连。 最优子结构性质为动态规划算法解决问题提供了重要线索。 2.子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。
云端获取和启用云服务器,并实时扩展或缩减云计算资源。云服务器 支持按实际使用的资源计费,可以为您节约计算成本。 腾讯云服务器(CVM)为您提供安全可靠的弹性云计算服务。只需几分钟,您就可以在云端获取和启用云服务器,并实时扩展或缩减云计算资源。云服务器 支持按实际使用的资源计费,可以为您节约计算成本。
扫码关注云+社区
领取腾讯云代金券