伪红外图像处理 副标题:优秀的IC/FPGA开源项目(七)-伪红外图像处理 《优秀的IC/FPGA开源项目》是新开的系列,旨在介绍单一项目,会比《优秀的 Verilog/FPGA开源项目》内容介绍更加详细...两者相辅相成,互补互充~ ---- 演示伪红外图像处理。 介绍 红外摄像机因为对可见光不敏感,所以在一些特殊行业应用越来越广泛。...来源:知乎 该项目展示了一些红外图像处理算法,这些算法可以提高图像质量。...边缘检测 应用其中一种算法后,对图像边缘处理后,图像尺寸会减小(可选)。...现在它被配置为输入流不进行任何处理的情况下转到输出。
伪红外图像处理 副标题:优秀的IC/FPGA开源项目-伪红外图像处理 《优秀的IC/FPGA开源项目》是新开的系列,旨在介绍单一项目,会比《优秀的 Verilog/FPGA开源项目》内容介绍更加详细,包括但不限于综合...两者相辅相成,互补互充~ 演示伪红外图像处理。 介绍 红外摄像机因为对可见光不敏感,所以在一些特殊行业应用越来越广泛。...来源:知乎 该项目展示了一些红外图像处理算法,这些算法可以提高图像质量。...边缘检测 应用其中一种算法后,对图像边缘处理后,图像尺寸会减小(可选)。 架构 所有算法都基于 3x3 内核,这就是为什么所有算法内核 (PE) 都必须与 FIFO 通信,每个 PE 都有一行的延迟。...现在它被配置为输入流不进行任何处理的情况下转到输出。
前言 在上期的文章中,我们简要学习了有关图像梯度的知识,中间用数学知识进行了解读,最后用一句话进行了概括,今天,我们将继续学习图像的有关知识--图像阈值化(二值化)。...一、图像阈值化 图像阈值化(也叫二值化),就是将图像上每一个像素点的像素值设置为一个定值,一般为0(黑色)或者白色(255),最后整个图像将会表现出出黑和白的观察效果。 ...通常情况下,一幅图像糊了包含目标物体、还会包含背景和各种噪声(阈值化后噪声可能就是一些小白点),想要得到目标物体,常用的方法就是设定一个阈值,用阈值将图像的像素分割成两部分:大于阈值的像素和小于T的像素...): # 根据官方解释,第一步图像输入必须是灰度图像, image_gray = cv2.cvtColor(coor_image, 0) # 显示原始图像,后面进行对比...第二个参数 x : 阈值大小(超过或低于这个大小都会被处理)。
import cv2 import numpy as np from matplotlib import pyplot as plt img_path = '...
简单的阈值处理 对于每个像素,应用相同的阈值。如果像素的值小于阈值,它就被设置为0,否则就被设置为一个最大值。函数cv.threshold被用来应用阈值化。第一个参数是源图像,它应该是一个灰度图像。...第二个参数是阈值,用于对像素值进行分类。第三个参数是最大值,它被分配给超过阈值的像素值。OpenCV提供了不同类型的阈值处理,由该函数的第四个参数给出。...第一个是使用的阈值,第二个是阈值化的图像。 这段代码比较了不同的简单阈值处理类型。...在这里,算法根据一个像素周围的小区域来确定该像素的阈值。因此,我们对同一图像的不同区域得到不同的阈值,这对具有不同光照度的图像有更好的效果。...下面的代码比较了全局阈值处理和自适应阈值处理对不同照度的图像的影响。
一、函数简介 1、threshold—图像简单阈值化处理 函数原型:threshold(src, thresh, maxval, type, dst=None) src:图像矩阵 thresh...:阈值 maxVal:像素最大值 type:阈值化类型 2、adaptiveThreshold—图像自适应阈值化处理 函数原型:adaptiveThreshold(src, maxValue,...thresholdType:阈值化类型 blockSize:窗口尺寸 C:为一整数,减去该整数来对阈值进行微调 3、thresholding.otsu—图像最大类间方差阈值化处理 函数原型:...程序暂停 #对图像进行高斯滤波...程序暂停 #对图像进行高斯滤波
阈值 我们将图像分块最简单的方法就是设定一个阈值对图像进行二值化处理,那么这个阈值我们应该如何选择呢 对于图像的直方图存在明显边界的图像,我们可以很容易找到这个阈值,但是如果图像直方图分界不明显,那么这个阈值的寻找将变得十分困难...因此我们存在全局阈值与局部阈值两种 全局阈值 全局阈值就是在整幅图像中我们只有一个阈值来对图像进行二值化,但是其存在其局限性,例如图像中存在高斯噪声的情况下,我们无法找到一个很好的阈值将图像的边界分开...另外如果图像的边界是在局部对比下出现的,即不同位置阈值不同,那么全局阈值的效果也非常不好 我们先不管全局阈值的缺点,我们来看看我们如何通过计算来获得这个全局阈值T呢?...我们又OTSU’S算法 下面是一些数学概念在图像上的体现 OTSU算法就是想把图像分为两个块,然后使得这两个块之间的方差最大,也就是最大化两个块的均值与全局均值的差的平方 由于只存在这么一个阈值...它的原理就是将图像分块,对于不同的部分应用不同的阈值,在matlab中我们有blockproc这个函数来实现这个过程 我们看到相比于之前,效果确实有很大的提升,但是缺点也特别明显,就是图像会出现分块化
对图像文件增加椒盐噪声,然后进行中值滤波 Y=imread(‘D:\321.jpg’);%读入图像 I=rgb2gray(Y);%转换成灰度图 J =imnoise(I,‘salt & pepper’,...0.02);%给图像添加椒盐噪声 K =medfilt2(J);%对增加噪声后的图像进行中值滤波 subplot(2,2,1); imshow(I); title(‘原图’);%显示图像,并命名‘原图’...subplot(2,2,2); imshow(J); title(‘加噪声后’);%显示图像,并命名‘加噪声后’ subplot(2,2,3); imshow(K); title(‘加噪中值滤波后’)...;%显示图像,并命名‘加噪中值滤波后’ 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/126043.html原文链接:https://javaforall.cn
1、点击[Matlab] 2、点击[命令行窗口] 3、按<Enter>键
最终,即使使用B&W图像,我们也能分辨出轮廓线。 1.2模糊步骤 中值和归一化滤波器步骤都是用于在保持边的同时对信号的噪声进行滤波的步骤。...二阶导数是这样的: 这是一个核,我们将在图像上运行,它将为我们提供二阶导数图像。 1.4应用1/0阈值 我们不关心二阶导数是正还是负。我们所关心的只是我们有0的一小部分,因为这是我们认为的边缘。...这就是为什么我们应用这个1/0阈值。 1.5侵蚀滤波器 侵蚀滤波器是我们用来平滑图像的东西。这背后的想法是,我们希望使图像更清晰。用更专业的话来说,有一个核在图像上传递,并用它们的最小值替换值。...它解释了如何使用拉普拉斯滤波器以非深度学习的方式应用边缘检测 它解释了如何使用图像进行从头到脚的实验,以及如何创建一个有效的图像处理管道 当然,这本身很有趣,因为它为你提供了一个分析不同城市轮廓线的工具...你可以看到,城市A和城市B有不同的概况,特别是使用提取的信号,我们可以通过以下方式深化这项研究: 提取轮廓线的平均值、中值和标准差 使用深度学习对城市轮廓线进行分类 对轮廓线与时间进行统计研究(轮廓线如何随时间演变
算法介绍 这是OpenCV图像处理专栏的第十一篇文章,之前介绍过两种处理白平衡的算法,分别为灰度世界算法和完美反射算法。今天来介绍另外一个自动白平衡的算法,即动态阈值法,一个看起来比较厉害的名字。...算法原理 和灰度世界法和完美反射算法类似,动态阈值算法仍然分为两个步骤即白点检测和白点调整,具体如下: 白点检测 1、把尺寸为的原图像从空间转换到空间。 2、把图像分成个块。...3、对每个块分别计算,的平均值,。 4、判定每个块的近白区域(near-white region)。判别准则为:- - ,其中sign为符号函数,即正数返回1,负数返回0。...5、调整原图像:Ro= R*Rgain; Go= G*Ggain; Bo= B*Bgain; 代码实现 块的大小取了100,没处理长或者宽不够100的结尾部分,这个可以自己添加。...j)[0] = B; dst.at(i, j)[1] = G; dst.at(i, j)[2] = R; } } return dst; } 效果 图像均为算法处理前和处理后的顺序
今天我们进行我们的第一个 Hello World 项目--用 OpenVINO 对图像进行分类。该项目为【OpenVINO™ Notebooks】项目的 001-hello-world 工程。...我们可以通过点击环境的名称然后进行选择导入库文件import jsonimport cv2import matplotlib.pyplot as pltimport numpy as npfrom openvino.inference_engine...import IECore复制代码选择这个单元格 ctrl + alt + enter 进行代码运行,也可以直接点击左上角的运行按钮。...shapeinput_image = np.expand_dims(input_image.transpose(2, 0, 1), 0)plt.imshow(image);复制代码运行后我们在 VSCode 中会看到进行推理...好了,今天的内容就是这些了,如果对你有所帮助,欢迎转发给你的朋友们。我是 Tango,一个热爱分享技术的无名程序猿,我们下期见。我正在参与2023腾讯技术创作特训营第四期有奖征文,快来和我瓜分大奖!
前一篇文章介绍Python调用OpenCV实现图像缩放、图像旋转、图像翻转、图像平移。本篇文章将讲解图像阈值化处理操作,包括二进制阈值化、反二进制阈值化、截断阈值化、反阈值化为0、阈值化为0。...全文均是基础知识,希望对您有所帮助。..., type) 参数的具体含义如下: 常用的方法如下表所示,其中函数中的参数Gray表示灰度图,参数127表示对像素值进行分类的阈值,参数255表示像素值高于阈值时应该被赋予的新像素值,最后一个参数对应不同的阈值处理方法...反阈值化为0 该方法先选定一个阈值,比如127,接着对图像的灰度值进行如下处理: (1) 大于等于阈值127的像素点变为0 (2) 小于该阈值的像素点值保持不变 例如,163->0,86->86,...阈值化为0 该方法先选定一个阈值,比如127,接着对图像的灰度值进行如下处理: (1) 大于等于阈值127的像素点,值保持不变 (2) 小于该阈值的像素点值设置为0 例如,163->163,86-
上图表示一个 8×8 的原图,每个方格代表一个像素点;其中一个包含 X 的方格是一个 5×5 的卷积核,核半径等于 5/2 = 2; 进行卷积操作后,生成图像为上图中包含 Y 的方格,可以看出是一个 4...由上图可知,生成图边界与原图边界差2个像素点,这是因为,卷积核半径为2,所以,为了保证图像处理前后尺寸一致,可将原图填充为 12×12 大小。...int pix_value = 0;//用来累加每个位置的乘积 for (int kernel_y = 0;kernel_y对每一个点根据卷积模板进行卷积...for (int i = 1; i<inputImageHeigh - 1; i++) { for (int j = 1; j<inputImageWidth - 1; j++) { //对每一个点进行卷积...=原图像+加重的边缘 //sobel算子边缘检测模板 Mat mat3 = (Mat_(3, 3) << -1, 0, 1, -2, 0, 2, -1, 0, 1);//横向边缘检测
在Mac上用Preview、Keynote、ImageMagick和FreeSWITCH进行图像处理 现在处理图片的软件这么多,你可能奇怪为什么需要用到FreeSWITCH处理图像。...是的,最流行也是最标准的图像处理工具当然是PhotoShop,PhotoShop如此流行,以至于它的缩写PS都成了图像处理的代名词。...首先,ImageMagic在“抠图”(将底色变透明)时,由于背景明暗相差太大,需要很多次处理才能做得更好,但太多次数处理图像又会使图像质量变差,另外,我也不知道如何用ImageMagick处理颜色的层次...switch_img_read_png(argv[1], SWITCH_IMG_FMT_ARGB); 6 switch_assert(img); 7 8 int i, j; 9 第10行,对图像从上到下逐行扫描...第11行,对当前行的每一个像素进行扫描。第12行,依次取每一个像素的颜色值。
具体来说,就是通过本数字图像传感器对人和物进行拍摄,之后对拍摄进行图像处理,使用基于空域处理相关的一系列图像增强算法对图像进行增强和处理。...这两张图片分别是处理后和处理前的两张图,可以看出,直方图均衡化可以有效的对图像进行对比度增强。...操作方法 首先使用摄像头拍摄部分的功能进行图像的采集和存储。之后我们使用直方图均衡化、锐化、叠加和双边滤波的功能,对我们采集的图像进行处理,从而使用在物联网的相关设计中。...总结 本设计利用数字图像传感器实现了一种基于空域增强的物联网设计图像处理方法,主要针对图像的噪声、对比度、画质等成分进行处理。...通过分析双边滤波、锐化和直方图均衡化等多种空域图像处理方式,对拍摄的图像进行处理,结果证明,这类设计可以很好的使用在物联网的设计开发中。
在Java中可以使用标准库提供的javax.imageio和java.awt.image包来进行图像处理。 首先,你需要使用ImageIO类的静态方法read()来读取图像文件。...: File file = new File("image.png"); BufferedImage image = ImageIO.read(file); 然后,你可以使用Graphics2D对象对图像进行编辑...例如,以下代码将在图像上绘制一条直线: Graphics2D g2d = image.createGraphics(); g2d.setColor(Color.RED); g2d.drawLine(0..., 0, image.getWidth(), image.getHeight()); g2d.dispose(); 除此之外,你还可以修改像素数据来进行图像处理。...可以通过getRGB()和setRGB()方法获取和设置图像中像素的颜色值。
在上一节中,我们用几种方法得到了去马赛克后的图像 我们当前的进度如下: 现在我们的图像已经是3个通道了,每一个通道的值都代表着对特定颜色波长的响应——你看,我们又涉及到颜色的本质了:颜色只是我们的感觉...我们现在要做的事,是把用相机本身颜色空间标识的图像,转换到各个设备间公用的sRGB颜色空间,以便于在显示器上显示。 那么,应该如何完成这个过程呢?这里面的各个颜色空间是什么意思呢?
作为一名计算机视觉研究人员和开发人员,我知道很多关于处理图像的知识——但实际上,我是一个很差劲的摄影师。 幸运的是,有一种方法可以通过应用图像/帧平均来模拟长时间曝光。...通过对固定相机在给定时间内拍摄的图像进行平均,我们可以模拟长时间曝光。 由于视频只是一系列图像,我们可以很容易地通过平均视频中的所有帧来构造长曝光。其效果是出乎意料的好,就像这篇博客文章的顶部图片。...三:测试结果 让我们通过处理两个示例视频来看看程序的实际操作效果。请注意,每个视频都是由安装在三脚架上的摄像机拍摄的,以确保视频的稳定性。...让我们继续第二个河流的例子: 处理效果: 总结 在今天的博客文章中,我们学习了如何使用OpenCV和图像处理技术来模拟长时间曝光的图像。...为了模拟长曝光,我们应用了帧平均,这是将一组图像平均在一起的过程。我们假设我们的输入图像/视频是使用安装的摄像机捕获的(否则结果输出图像将会失真)。
领取专属 10元无门槛券
手把手带您无忧上云