首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

mysql语句根据一个或多个列对结果集进行分组

MySQL GROUP BY 语句 GROUP BY 语句根据一个或多个列对结果集进行分组。 在分组的列上我们可以使用 COUNT, SUM, AVG,等函数。...WHERE column_name operator value GROUP BY column_name; ---- 实例演示 本章节实例使用到了以下表结构及数据,使用前我们可以先将以下数据导入数据库中。...+----+--------+---------------------+--------+ 6 rows in set (0.00 sec) 接下来我们使用 GROUP BY 语句 将数据表按名字进行分组...| | 小王 | 2 | +--------+----------+ 3 rows in set (0.01 sec) 使用 WITH ROLLUP WITH ROLLUP 可以实现在分组统计数据基础上再进行相同的统计...例如我们将以上的数据表按名字进行分组,再统计每个人登录的次数: mysql> SELECT name, SUM(singin) as singin_count FROM employee_tbl GROUP

3.6K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值

    一、前言 前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习...({'lv': lv, 'num': num}) def demean(arr): return arr - arr.mean() # 按照"lv"列进行分组并计算出"num"列每个分组的平均值...gp_mean) df2["juncha"] = df2["num"] - df2["gp_mean"] print(df2) 方法三:使用 transform transform能返回完整数据,输出的形状和输入一致...这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。...最后感谢粉丝【在下不才】提问,感谢【德善堂小儿推拿-瑜亮老师】给出的具体解析和代码演示,感谢【月神】提供的思路,感谢【dcpeng】等人参与学习交流。

    3K20

    GreenPlum和openGauss进行简单聚合时对扫描列的区别

    扫描时,不仅将id1列的数据读取出来,还会将其他列的数据也读取上来。一旦列里有变长数据,无疑会显著拖慢扫描速度。 这是怎么做到的?在哪里设置的需要读取所有列?以及为什么要这么做?...GP的aocs_getnext函数中columScanInfo信息有投影列数和投影列数组,由此决定需要读取哪些列值: 2、接着就需要了解columScanInfo信息来自哪里 aoco_beginscan_extractcolumn...函数对列进行提取,也就是targetlist和qual: 3、顺藤摸瓜,targetlist和qual来自哪里?...在SeqNext函数中,可以看到SeqScan计划节点的targetlist和qual。...由此可以知道他们来自执行计划中: 4、这样,就需要知道执行计划如何生成,targetlist链表是如何初始化的 create_plan是执行计划的生成入口。

    1K30

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...在本段代码中,numpy 用于生成随机数数组和执行数组操作,pandas 用于创建和操作 DataFrame。...然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    15700

    对dataframe的一列做数据操作,列表推导式和apply那个效率高啊?

    一、前言 前几天在Python钻石群【一级大头虾选手】问了一个Python处理的问题,这里拿出来给大家分享下。...二、实现过程 这里【ChatGPT】给出了一个思路,如下所示: 通常情况下,使用列表推导式的效率比使用apply要高。因为列表推导式是基于Python底层的循环语法实现,比apply更加高效。...在进行简单的运算时,如对某一列数据进行加减乘除等操作,可以通过以下代码使用列表推导式: df['new_col'] = [x*2 for x in df['old_col']] 如果需要进行复杂的函数操作...,则可以使用apply函数,例如: def my_function(x): # 进行一些复杂的操作 return result df['new_col'] = df['old_col'].apply...这篇文章主要盘点了一个Python基础的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    31720

    《Pandas Cookbook》第07章 分组聚合、过滤、转换1. 定义聚合2. 用多个列和函数进行分组和聚合3. 分组后去除多级索引4. 自定义聚合函数5. 用 *args 和 **kwargs

    # 按照AIRLINE分组,使用agg方法,传入要聚合的列和聚合函数 In[3]: flights.groupby('AIRLINE').agg({'ARR_DELAY':'mean'}).head(...用多个列和函数进行分组和聚合 # 导入数据 In[9]: flights = pd.read_csv('data/flights.csv') flights.head() Out[9]...# 用列表和嵌套字典对多列分组和聚合 # 对于每条航线,找到总航班数,取消的数量和比例,飞行时间的平均时间和方差 In[12]: group_cols = ['ORG_AIR', 'DEST_AIR'...更多 # Pandas默认会在分组运算后,将所有分组的列放在索引中,as_index设为False可以避免这么做。...和Month进行分组,然后使用transform方法,传入函数,对数值进行转换 In[66]: pcnt_loss = weight_loss.groupby(['Name', 'Month'])['

    8.9K20

    数据分组

    、quantile 求分位数 (2)按多列进行分组 按多列进行分组,只要将多个列名以列表的形式传给 groupby() 即可。...df.groupby(["客户分类","区域"]).sum() #只会对数据类型为数值(int,float)的列才会进行运算 无论分组键是一列还是多列,只要直接在分组后的数据进行汇总运算,就是对所有可以计算的列进行计算...其实这和列选择一样,传入多个Series时,是列表中的列表;传入一个Series直接写就可以。...) #对分组后数据进行求和运算 df.groupby(df["客户分类"]).sum() #只会对数据类型为数值(int,float)的列才会进行运算 (2)按照多个Series进行分组 #以 客户分类...df.groupby("客户分类") #分组键是列名 df.groupby(df["客户分类"]) #分组键是Series #对分组后的数据进行 计数运算 和 求和运算 df.groupby

    4.5K11

    Python中Pandas库的相关操作

    2.DataFrame(数据框):DataFrame是Pandas库中的二维表格数据结构,类似于电子表格或SQL中的表。它由行和列组成,每列可以包含不同的数据类型。...6.数据聚合和分组:Pandas可以通过分组和聚合操作对数据进行统计和汇总。它支持常见的统计函数,如求和、均值、最大值、最小值等。...8.数据的合并和连接:Pandas可以将多个DataFrame对象进行合并和连接,支持基于列或行的合并操作。...# 按照某一列的值排序 df.sort_values('Age') # 按照多列的值排序 df.sort_values(['Age', 'Name']) # 对DataFrame的元素进行排名 df...df.fillna(value) 数据聚合和分组 # 对列进行求和 df['Age'].sum() # 对列进行平均值计算 df['Age'].mean() # 对列进行分组计算 df.groupby

    31130

    pandas中的数据处理利器-groupby

    groupby的操作过程如下 split, 第一步,根据某一个或者多个变量的组合,将输入数据分成多个group apply, 第二步, 对每个group对应的数据进行处理 combine, 第三步...分组方式 分组的依据既可以是单个标签,也可以是多个标签的组合,示例如下 >>> df = pd.DataFrame({'id':[1, 2, 3, 4], ......分组处理 分组处理就是对每个分组进行相同的操作,groupby的返回对象并不是一个DataFrame, 所以无法直接使用DataFrame的一些操作函数。...分组过滤 当需要根据某种条件对group进行过滤时,可以使用filter方法,用法如下 >>> df = pd.DataFrame({'x':['a','a','b','b','c','c'],'y':...汇总数据 transform方法返回一个和输入的原始数据相同尺寸的数据框,常用于在原始数据框的基础上增加新的一列分组统计数据,用法如下 >>> df = pd.DataFrame({'x':['a','

    3.6K10

    从pandas中的这几个函数,我看懂了道家“一生二、二生三、三生万物”

    当然,groupby的强大之处在于,分组依据的字段可以不只一列。例如想统计各班每门课程的平均分,语句如下: ? 不只是分组依据可以用多列,聚合函数也可以是多个。...普通聚合函数mean和agg的用法区别是,前者适用于单一的聚合需求,例如对所有列求均值或对所有列求和等;而后者适用于差异化需求,例如A列求和、B列求最值、C列求均值等等。...数据透视表本质上仍然数据分组聚合的一种,只不过是以其中一列的唯一值结果作为行、另一列的唯一值结果作为列,然后对其中任意(行,列)取值坐标下的所有数值进行聚合统计,就好似完成了数据透视一般。...分组后如不加['成绩']则也可返回dataframe结果 从结果可以发现,与用groupby进行分组统计的结果很是相近,不同的是groupby返回对象是2个维度,而pivot_table返回数据格式则更像是包含...pivot_table+stack=groupby 类似地,对groupby分组聚合结果进行unstack,结果如下: ?

    2.5K10

    用Python实现透视表的value_sum和countdistinct功能

    在pandas库中实现Excel的数据透视表效果通常用的是df['a'].value_counts()这个函数,表示统计数据框(DataFrame) df的列a各个元素的出现次数;例如对于一个数据表如pd.DataFrame...Excel数据透视表与Python实现对比 就是对表df中的a列各个值出现的次数进行统计。...df['b'].sum()是对b列求和,结果是21,和a列无关;所以我们可以自己按照根据a列分表再求和的思路去实现。...自己造轮子的做法可以是: def df_value_sum(df,by='a',s='b'):#by和s分别对应根据a列对b列的数求和 keys=set(df[by]) ss={}...同样的方法可以写出df_value_max(df)、df_value_min(df)、 df_value_min(df) df_value_avg(df)等;如果需要对除a外的所有列进行分组求和操作,可以用

    4.3K21

    Pandas数据聚合:groupby与agg

    引言 在数据分析中,数据聚合是一项非常重要的操作。Pandas库提供了强大的groupby和agg功能,使得我们能够轻松地对数据进行分组和聚合计算。...基础概念 groupby 方法 groupby是Pandas中最常用的分组工具之一。它允许我们将DataFrame按照一个或多个列进行分组,从而可以对每个分组执行各种聚合操作。...它可以接受多种类型的参数,如字符串表示的函数名、自定义函数、字典等。通过agg,我们可以一次性对多个列应用不同的聚合函数,极大地提高了数据处理的灵活性和效率。...检查拼写是否正确,并确认列确实存在于DataFrame中。 TypeError: 当尝试对非数值类型的数据应用某些聚合函数(如求和)时,可能会遇到类型错误。...:") print(grouped_salary_sum) 多列聚合 基本用法 多列聚合是指同时对多个列进行分组和聚合计算。

    40510

    Pandas图鉴(三):DataFrames

    默认情况下,Pandas会对任何可远程求和的东西进行求和,所以必须缩小你的选择范围,如下图: 注意,当对单列求和时,会得到一个Series而不是一个DataFrame。...在分组时,不同的列有时应该被区别对待。例如,对数量求和是完全可以的,但对价格求和则没有意义。...在上面的例子中,所有的值都是存在的,但它不是必须的: 对数值进行分组,然后对结果进行透视的做法非常普遍,以至于groupby和pivot已经被捆绑在一起,成为一个专门的函数(和一个相应的DataFrame...方法)pivot_table: 没有列参数,它的行为类似于groupby; 当没有重复的行来分组时,它的工作方式就像透视一样; 否则,它就进行分组和透视。...aggfunc参数控制应该使用哪个聚合函数对行进行分组(默认为平均值)。

    44420

    【Python环境】Python中的结构化数据分析利器-Pandas简介

    或者以数据库进行类比,DataFrame中的每一行是一个记录,名称为Index的一个元素,而每一列则为一个字段,是这个记录的一个属性。...通过逻辑指针进行数据切片: df[逻辑条件]df[df.one >= 2]#单个逻辑条件df[(df.one >=1 ) & (df.one 多个逻辑条件组合 这种方式获得的数据切片都是DataFrame...two', 'one', 'three'], 'C' :randn(8), 'D' : randn(8)});df.groupby('A').sum()#按照A列的值分组求和...df.groupby(['A','B']).sum()##按照A、B两列的值分组求和 对应R函数: tapply() 在实际应用中,先定义groups,然后再对不同的指标指定不同计算方式。...groups = df.groupby('A')#按照A列的值分组求和groups['B'].sum()##按照A列的值分组求B组和groups['B'].count()##按照A列的值分组B组计数 默认会以

    15.1K100

    用 Pandas 进行数据处理系列 二

    列显示 hight , 否则显示 low df['group'] = np.where(df['pr'] > 3000, 'hight', 'low') 对复合多个条件的数据进行分级标记 df.loc...,然后将符合条件的数据提取出来pd.DataFrame(category.str[:3])提取前三个字符,并生成数据表 数据筛选 使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和...= ['beijing', 'shanghai']) 对筛选后的结果按 pr 进行求和 df.query('city' == ['beijing', 'shanghai']).pr.sum() 数据汇总...df.groupby(‘city’).count()按 city 列分组后进行数据汇总df.groupby(‘city’)[‘id’].count()按 city 进行分组,然后汇总 id 列的数据df.groupby...city 进行分组,然后计算 pr 列的大小、总和和平均数 数据统计 数据采样,计算标准差、协方差和相关系数。

    8.2K30

    groupby函数详解

    1 groupby()核心用法 (1)根据DataFrame本身的某一列或多列内容进行分组聚合,(a)若按某一列聚合,则新DataFrame将根据某一列的内容分为不同的维度进行拆解,同时将同一维度的再进行聚合...,(b)若按某多列聚合,则新DataFrame将是多列之间维度的笛卡尔积,即:新DataFrame具有一个层次化索引(由唯一的键对组成),例如:“key1”列,有a和b两个维度,而“key2”有one和...two两个维度,则按“key1”列和“key2”聚合之后,新DataFrame将有四个group; 注意:groupby默认是在axis=0上进行分组的,通过设置axis=1,也可以在其他任何轴上进行分组...列数据聚合,当对多列数据如data1和data2根据某个键入key1聚合分组时,组引入列表['data1','data2'],此处对data2外加中括号是一个意思,只是影响输出格式。...(inplace=True) #将聚合表的index转为普通列 #对聚合表增加“各列统计求和”的行,同时指定参与求和的列,即“号码归属省”列需排除; MT_fs.loc['总计']=MT_fs.loc

    3.8K11
    领券