首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

巧用R中的各种排名窗口函数

【窗口函数】第三弹:聚合函数和分布函数 R语言中,也有与sql中一一对应的4种类型的窗口函数,除了聚合函数有点差异之外,其他3种类型的窗口函数完全一致,而且在R中使用管道函数书写窗口函数代码...SQL中排名函数有4个:row_number()、rank()、dense_rank()和ntile(),R语言中也有4个排名函数与之对应,函数名也几乎相同: ?...1 row_number函数 R语言中的row_number函数与sql中的row_number函数相同,对group_by后面字段进行分组,按照order_by后面字段排序,生成一个连续不重复的编码...之前说过,使用管道函数连接的语句执行顺序和书写顺序一致,上面语句可以理解为:1、使用group_by对指定的user_no字段分组;2、使用order_by函数对组内数据按照购买时间升序排列编码,增加一个新字段...;3、使用arrange对指定的字段user_no和buy_date排序。

3.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    生信代码:数据处理( tidyverse包)

    dplyr包下主要是以下几个操作: select()——选择列 filter/slice()——筛选行 arrange()——对行进行排序 mutate()——修改列/创建列 summarize(...)——汇总数据 而这些函数都可以与group_by结合,分组对原数据框进行处理。...mydata %>% mutate(sumx=x1+x2, meanx=sumx/4)##dplyr允许使用管道%>%操作,且meanx可以引用sumx 2...,需要保存下来 5 arrange() R base包中涉及到排序的包括 sort(),rank(),order(),而在dplyr包中与排序相关的是arrange()包,默认是从高到低进行排序,如果变换排序顺序则可以使用...进行排序,再对score进行排序 6 group_by() group_by可以对原数据框进行分组计算,例如对于我们本文中的数据框,我们如果对个人或者科目感兴趣的话,可以使用group_by(name

    2.1K10

    Day6-学习笔记(2024年2月3日)

    学习R包R包是多个函数的集合,具有详细的说明和示例,学习生信R语言必学的原因是丰富的图表和biocductor的各种生信分析R包,包的使用是一通百通的,以dplyr为例,讲解一下R包一、安装和加载R包1...3.加载R包library()和require(),两个函数均可。使用一个包,是需要先安装再加载,才能使用包里的函数。...")library(dplyr)示例数据直接使用内置数据集iris的简化版:test dplyr五个基础函数1.mutate(),新增列mutate...的平均值和标准差group_by(test, Species)summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length)...)三、dplyr两个实用技能1.管道操作 %>% (cmd/ctr + shift + M)test %>% group_by(Species) %>% summarise(mean(Sepal.Length

    17710

    学习R包

    使用一个R包:先安装,再加载,最后使用实操代码(依旧以dplyr为例)options("repos"=c(CRAN="http://mirrors.tuna.tsinghua.edu.cn/CRAN/"...dplyr包有很多函数,为了防止dplyr包中的函数名与其他函数产生冲突,使用时前面加上“包名::”dplyr五个基础函数mutate(),新增列select(),按列筛选按列号筛选注意筛选内容与表格内容的统一...(Sepal.Length))#用desc从大到小summarise():汇总,对数据进行汇总操作,结合group_by使用实用性强summarise(test, mean(Sepal.Length),...sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差eg:先按照Species分组,计算每组Sepal.Length的平均值和标准差group_by(test, Species...)summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))dplyr两个实用技能管道操作 %>% (cmd/ctr

    12310

    生信学习小组day6--大姚

    versicolor"))##筛选条件是 Species == "setosa"以及Species == "versicolor",只要满足其中一个筛选条件就能被筛选 4.arrange(),按某1列或某几列对整个表格进行排序...使用实用性更强 summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差 # 以下两条代码的意思是先按照...Species分组,计算每组Sepal.Length的平均值和标准差 group_by(test, Species) summarise(group_by(test, Species),mean(Sepal.Length...), sd(Sepal.Length)) 三、dplyr两个实用技能 1:管道操作 %>% 可以直接把数据传递给下一个函数调用或表达式 快捷键(cmd/ctr + shift + M) group_by...中的数据直接传递给group_by函数使用,也可以将分组后的species数据传递给summarise函数使用 test %>% group_by(Species) %>% summarise

    81800

    分组统计你只想到group_by操作吗?

    目录 1 dplyr包中的group_by联合summarize 1.1 group_by语法 1.2 summarise语法 1.3 group_by和summarise单变量分组计算 1.4...group_by和summarise多变量分组计算 2 ddply 2.1 ddply语法 2.2 ddply分组计算示例 3 aggregate 3.1 aggregate语法 3.2 aggregate...$ carb: num 4 4 1 1 2 1 4 2 2 4 ... 1 dplyr包中的group_by联合summarize 1.1 group_by语法 data为数据集 ...为分组变量...和summarise单变量分组计算示例 > library(dplyr) #加载dplyr包 > by_cyl group_by(mtcars,cyl) #对mtcars数据集根据cyl变量进行分组注意行...——————————————————————————————————— >library(dplyr) #加载dplyr包 > mtcars %>% group_by(cyl) %>% summarise

    99430
    领券