首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )

一、RDD#filter 方法 1、RDD#filter 方法简介 RDD#filter 方法 可以 根据 指定的条件 过滤 RDD 对象中的元素 , 并返回一个新的 RDD 对象 ; RDD#filter...传入 filter 方法中的 func 函数参数 , 其函数类型 是 接受一个 任意类型 元素作为参数 , 并返回一个布尔值 , 该布尔值的作用是表示该元素是否应该保留在新的 RDD 中 ; 返回 True...保留元素 ; 返回 False 删除元素 ; 3、代码示例 - RDD#filter 方法示例 下面代码中的核心代码是 : # 创建一个包含整数的 RDD rdd = sc.parallelize([...RDD#distinct 方法 用于 对 RDD 中的数据进行去重操作 , 并返回一个新的 RDD 对象 ; RDD#distinct 方法 不会修改原来的 RDD 对象 ; 使用时 , 直接调用 RDD...对象的 distinct 方法 , 不需要传入任何参数 ; new_rdd = old_rdd.distinct() 上述代码中 , old_rdd 是原始 RDD 对象 , new_rdd 是元素去重后的新的

48310

【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 中的元素 )

一、RDD#sortBy 方法 1、RDD#sortBy 语法简介 RDD#sortBy 方法 用于 按照 指定的 键 对 RDD 中的元素进行排序 , 该方法 接受一个 函数 作为 参数 , 该函数从...RDD 中的每个元素提取 排序键 ; 根据 传入 sortBy 方法 的 函数参数 和 其它参数 , 将 RDD 中的元素按 升序 或 降序 进行排序 , 同时还可以指定 新的 RDD 对象的 分区数...⇒ U 参数 : 函数 或 lambda 匿名函数 , 用于 指定 RDD 中的每个元素 的 排序键 ; ascending: Boolean 参数 : 排序的升降设置 , True 生序排序 , False...键 Key 对应的 值 Value 进行相加 ; 将聚合后的结果的 单词出现次数作为 排序键 进行排序 , 按照升序进行排序 ; 2、代码示例 对 RDD 数据进行排序的核心代码如下 : # 对 rdd4...("查看文件内容展平效果 : ", rdd2.collect()) # 将 rdd 数据 的 列表中的元素 转为二元元组, 第二个元素设置为 1 rdd3 = rdd2.map(lambda element

49110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

    ; 2、RDD 中的数据存储与计算 PySpark 中 处理的 所有的数据 , 数据存储 : PySpark 中的数据都是以 RDD 对象的形式承载的 , 数据都存储在 RDD 对象中 ; 计算方法...: 大数据处理过程中使用的计算方法 , 也都定义在了 RDD 对象中 ; 计算结果 : 使用 RDD 中的计算方法对 RDD 中的数据进行计算处理 , 获得的结果数据也是封装在 RDD 对象中的 ; PySpark...中 , 通过 SparkContext 执行环境入口对象 读取 基础数据到 RDD 对象中 , 调用 RDD 对象中的计算方法 , 对 RDD 对象中的数据进行处理 , 得到新的 RDD 对象 其中有...上一次的计算结果 , 再次对新的 RDD 对象中的数据进行处理 , 执行上述若干次计算 , 会 得到一个最终的 RDD 对象 , 其中就是数据处理结果 , 将其保存到文件中 , 或者写入到数据库中 ;...二、Python 容器数据转 RDD 对象 1、RDD 转换 在 Python 中 , 使用 PySpark 库中的 SparkContext # parallelize 方法 , 可以将 Python

    49310

    在 PySpark 中,如何将 Python 的列表转换为 RDD?

    在 PySpark 中,可以使用SparkContext的parallelize方法将 Python 的列表转换为 RDD(弹性分布式数据集)。...以下是一个示例代码,展示了如何将 Python 列表转换为 RDD:from pyspark import SparkContext# 创建 SparkContextsc = SparkContext.getOrCreate...)# 定义一个 Python 列表data_list = [1, 2, 3, 4, 5]# 将 Python 列表转换为 RDDrdd = sc.parallelize(data_list)# 打印 RDD...的内容print(rdd.collect())在这个示例中,我们首先创建了一个SparkContext对象,然后定义了一个 Python 列表data_list。...接着,使用SparkContext的parallelize方法将这个列表转换为 RDD,并存储在变量rdd中。最后,使用collect方法将 RDD 的内容收集到驱动程序并打印出来。

    6610

    PySpark数据计算

    在 PySpark 中,所有的数据计算都是基于 RDD(弹性分布式数据集)对象进行的。RDD 提供了丰富的成员方法(算子)来执行各种数据处理操作。...一、map算子定义:map算子会对RDD中的每个元素应用一个用户定义的函数,并返回一个新的 RDD。...【拓展】链式调用:在编程中将多个方法或函数的调用串联在一起的方式。在 PySpark 中,链式调用非常常见,通常用于对 RDD 进行一系列变换或操作。...二、flatMap算子定义: flatMap算子将输入RDD中的每个元素映射到一个序列,然后将所有序列扁平化为一个单独的RDD。简单来说,就是对rdd执行map操作,然后进行解除嵌套操作。...四、filter算子定义:filter算子根据给定的布尔函数过滤RDD中的元素,返回一个只包含满足条件的元素的新RDD。

    14810

    Pyspark学习笔记(五)RDD的操作

    键值对RDD的操作 ---- 前言 提示:本篇博客讲的是RDD的各种操作,包括转换操作、行动操作、键值对操作 一、PySpark RDD 转换操作     PySpark RDD 转换操作(Transformation...可以是具名函数,也可以是匿名,用来确定对所有元素进行分组的键,或者指定用于对元素进行求值以确定其分组方式的表达式.https://sparkbyexamples.com/pyspark/pyspark-groupby-explained-with-example.../ sortBy(,ascending=True) 将RDD按照参数选出的指定数据集的键进行排序.使用groupBy 和 sortBy的示例:#求余数,并按余数,对原数据进行聚合分组#...如果左RDD中的键在右RDD中存在,那么右RDD中匹配的记录会和左RDD记录一起返回。 rightOuterJoin() 返回右RDD中包含的所有元素或记录。...intersection() 返回两个RDD中的共有元素,即两个集合相交的部分.返回的元素或者记录必须在两个集合中是一模一样的,即对于键值对RDD来说,键和值都要一样才行。

    4.4K20

    对spark中RDD的partition通俗易懂的介绍

    我们要想对spark中RDD的分区进行一个简单的了解的话,就不免要先了解一下hdfs的前世今生。 众所周知,hdfs是一个非常不错的分布式文件系统,这是这么多年来大家有目共睹的。...接下来我们就介绍RDD,RDD是什么?弹性分布式数据集。 弹性:并不是指他可以动态扩展,而是血统容错机制。 分布式:顾名思义,RDD会在多个节点上存储,就和hdfs的分布式道理是一样的。...我们就拿hdfs举例,将RDD持久化到hdfs上,RDD的每个partition就会存成一个文件,如果文件小于128M,就可以理解为一个partition对应hdfs的一个block。...鉴于上述partition大于128M的情况,在做sparkStreaming增量数据累加时一定要记得调整RDD的分区数。...那么该RDD保存在hdfs上就会有20个block,下一批次重新读取hdfs上的这些数据,RDD的partition个数就会变为20个。

    1.5K00

    Python大数据之PySpark(六)RDD的操作

    的转换算子的演示 from pyspark import SparkConf,SparkContext import re ''' 分区内:一个rdd可以分为很多分区,每个分区里面都是有大量元素,每个分区都需要线程执行...,直接复制log4j文件 # 2-对两个RDD求并集 rdd1 = sc.parallelize([1, 2, 3, 4, 5]) rdd2 = sc.parallelize([1, 2, 3, 4...的转换算子的演示 from pyspark import SparkConf, SparkContext import re ''' 分区内:一个rdd可以分为很多分区,每个分区里面都是有大量元素,...Value类型RDD的转换算子的演示 from pyspark import SparkConf, SparkContext import re ‘’’ 分区内:一个rdd可以分为很多分区,每个分区里面都是有大量元素...)) # 此类专门针对RDD中数据类型为KeyValue对提供函数 # rdd五大特性中有第四个特点key-value分区器,默认是hashpartitioner分区器 rdd__map = rdd1

    34550

    【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    一、RDD#reduceByKey 方法 1、RDD#reduceByKey 方法概念 RDD#reduceByKey 方法 是 PySpark 中 提供的计算方法 , 首先 , 对 键值对 KV...", 12) PySpark 中 , 将 二元元组 中 第一个元素 称为 键 Key , 第二个元素 称为 值 Value ; 按照 键 Key 分组 , 就是按照 二元元组 中的 第一个元素 的值进行分组...Y ; 具体操作方法是 : 先将相同 键 key 对应的 值 value 列表中的元素进行 reduce 操作 , 返回一个减少后的值,并将该键值对存储在RDD中 ; 2、RDD#reduceByKey...方法工作流程 RDD#reduceByKey 方法 工作流程 : reduceByKey(func) ; 首先 , 对 RDD 对象中的数据 分区 , 每个分区中的相同 键 key 对应的 值 value...', 'Jerry'] 再后 , 将 rdd 数据 的 列表中的元素 转为二元元组 , 第一个元素设置为 单词 字符串 , 第二个元素设置为 1 # 将 rdd 数据 的 列表中的元素 转为二元元组,

    75920

    Spark编程实验二:RDD编程初级实践

    一、目的与要求 1、熟悉Spark的RDD基本操作及键值对操作; 2、熟悉使用RDD编程解决实际具体问题的方法。...,在pyspark中通过编程来计算以下内容: (1)该系总共有多少学生; (2)该系共开设了多少门课程; (3)Tom同学的总成绩平均分是多少; (4)求每名同学的选修的课程门数; (5)该系DataBase...要求读取所有文件中的整数,进行排序后,输出到一个新的文件中,输出的内容个数为每行两个整数,第一个整数为第二个整数的排序位次,第二个整数为原待排序的整数。...)) > 0)) # 将每行数据转换成带有键值对的元组,键为元组类型 rdd3=rdd2.map(lambda x:((int(x.split(" ")[0]),int(x.split(..." ")[1])),x)) # 将数据中的键转换成SecondarySortKey类型 rdd4=rdd3.map(lambda x: (SecondarySortKey(x[0]),x

    3800

    【Python】PySpark 数据计算 ① ( RDD#map 方法 | RDD#map 语法 | 传入普通函数 | 传入 lambda 匿名函数 | 链式调用 )

    一、RDD#map 方法 1、RDD#map 方法引入 在 PySpark 中 RDD 对象 提供了一种 数据计算方法 RDD#map 方法 ; 该 RDD#map 函数 可以对 RDD 数据中的每个元素应用一个函数...方法 , 又称为 map 算子 , 可以将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map 函数 ; RDD#map 语法 : rdd.map(fun) 传入的..., 计算时 , 该 函数参数 会被应用于 RDD 数据中的每个元素 ; 下面的 代码 , 传入一个 lambda 匿名函数 , 将 RDD 对象中的元素都乘以 10 ; # 将 RDD 对象中的元素都乘以...操作,将每个元素乘以 10 rdd2 = rdd.map(lambda element: element * 10) 最后 , 打印新的 RDD 中的内容 ; # 打印新的 RDD 中的内容 print...在下面的代码中 , 先对 RDD 对象中的每个元素数据都乘以 10 , 然后再对计算后的数据每个元素加上 5 , 最后对最新的计算数据每个元素除以 2 , 整个过程通过函数式编程 , 链式调用完成 ;

    71810

    Pyspark学习笔记(五)RDD操作(二)_RDD行动操作

    `aggregate(zeroValue, seqOp, combOp)` 前言 提示:本篇博客讲的是RDD的操作中的行动操作,即 RDD Action 主要参考链接: 1.PySpark RDD Actions...pyspark.RDD.collect 3.take() 返回RDD的前n个元素(无特定顺序) (仅当预期结果数组较小时才应使用此方法,因为所有数据都已加载到驱动程序的内存中) pyspark.RDD.take...))] 4.takeOrdered(num, key=None) 从一个按照升序排列的RDD,或者按照key中提供的方法升序排列的RDD, 返回前n个元素 (仅当预期结果数组较小时才应使用此方法,因为所有数据都已加载到驱动程序的内存中...(3)) [(10,1,2,3)] 8.reduce() 使用指定的满足交换律/结合律的运算符来归约RDD中的所有元素; 处一般可以指定接收两个输入的 匿名函数对每个分区的聚合进行聚合 (这里同样是对每个分区,初始值的使用规则和fold是一样的,对每个分区都采用) seqOp方法是先对每个分区操作,然后combOp对每个分区的聚合结果进行最终聚合 rdd_agg_test

    1.6K40

    【Python】PySpark 数据计算 ② ( RDD#flatMap 方法 | RDD#flatMap 语法 | 代码示例 )

    一、RDD#flatMap 方法 1、RDD#flatMap 方法引入 RDD#map 方法 可以 将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map 函数 ;...中的每个元素及元素嵌套的子元素 , 并返回一个 新的 RDD 对象 ; 2、解除嵌套 解除嵌套 含义 : 下面的的 列表 中 , 每个元素 都是一个列表 ; lst = [[1, 2], [3, 4,...5], [6, 7, 8]] 如果将上述 列表 解除嵌套 , 则新的 列表 如下 : lst = [1, 2, 3, 4, 5, 6, 7, 8] RDD#flatMap 方法 先对 RDD 中的 每个元素...进行处理 , 然后再 将 计算结果展平放到一个新的 RDD 对象中 , 也就是 解除嵌套 ; 这样 原始 RDD 对象 中的 每个元素 , 都对应 新 RDD 对象中的若干元素 ; 3、RDD#flatMap...旧的 RDD 对象 oldRDD 中 , 每个元素应用一个 lambda 函数 , 该函数返回多个元素 , 返回的多个元素就会被展平放入新的 RDD 对象 newRDD 中 ; 代码示例 : # 将 字符串列表

    40210

    Pyspark学习笔记(五)RDD操作(一)_RDD转换操作

    `persist( ) 前言 提示:本篇博客讲的是RDD的操作中的转换操作,即 RDD Transformations 主要参考链接: 1.PySpark RDD Transformations with...data_list = [ ((10,1,2,3), (10,1,2,4), (10,1,2,4), (20,2,2,2), (20,1,2,3)) ] # 注意该列表中包含有两层tuple嵌套,相当于列表中的元素是一个...)] 3.filter() 一般是依据括号中的一个布尔型表达式,来筛选出满足为真的元素 pyspark.RDD.filter # the example of filter key1_rdd...但是pyspark中的union操作似乎不会自动去重,如果需要去重就使用后面讲的distinct # the example of union flat_rdd_test_new = key1_rdd.union...10,1,2,4)] 6.groupBy() 对元素进行分组,可以是具名函数,也可以是匿名,用来确定对所有元素进行分组的键,或者指定用于对元素进行求值以确定其分组方式的表达式.

    2K20

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    **查询总行数:** 取别名 **查询某列为null的行:** **输出list类型,list中每个元素是Row类:** 查询概况 去重set操作 随机抽样 --- 1.2 列元素操作 --- **获取...(参考:王强的知乎回复) python中的list不能直接添加到dataframe中,需要先将list转为新的dataframe,然后新的dataframe和老的dataframe进行join操作,...根据c3字段中的空格将字段内容进行分割,分割的内容存储在新的字段c3_中,如下所示 jdbcDF.explode( "c3" , "c3_" ){time: String => time.split(...返回当前DataFrame中不重复的Row记录。...DataFrame的数据框是不可变的,不能任意添加列,只能通过合并进行; pandas比Pyspark DataFrame有更多方便的操作以及很强大 转化为RDD 与Spark RDD的相互转换: rdd_df

    30.5K10
    领券