首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python导入自定义模块ImportError: No module named xxx问题

    Python导入自定义模块ImportError: No module named 'xxx'问题 文章目录 问题描述 问题分析 模块名冲突 import 工作原理 分析原因 路径错误...问题描述 python在导入自定义模块的时候(类、函数所有以.py结尾的文件), 出现"ImportError: No module named ‘xxx’"问题....问题分析 由于导入的是自定义模块, 主要是有两种原因. 一个是自定义的模块名和python模块库里缓存的模块名重复了.另一个可能的原因是, 相对路径和绝对路径的原因....这是预先导入的所有模块的缓存。 如果在模块缓存中没有找到该名称,Python将通过内置模块列表进行搜索。这些模块是和Python一起预先安装的,并且可以在Python标准库中找到。

    2.6K40

    数据导入与预处理-第4章-pandas数据获取

    数据导入与预处理-第4章-pandas数据获取 1 数据获取 1.1 概述 1.2 从CSV和TXT文件获取数据 1.2.1 读取csv案例-指定sep,encoding,engine 1.2.2 读取...sheetname:返回多表使用sheetname=[0,1],若sheetname=None是返回全表 → ① int/string 返回的是dataframe ②而none和list返回的是dict...返回JsonReader对象进行迭代。有关chunksize的更多信息,请参阅line-delimted json docs文件。只有当lines=True时,才能传递此消息。...需要注意的是,read_html()函数只能用于读取网页中的表格数据,该函数会返回一个包含网页中所有表格数据的列表。我们可通过索引获取对应位置的表格数据。...在 pandas 中支持直接从 sql 中查询并读取。

    4.9K31

    猿创征文|数据导入与预处理-第3章-pandas基础

    猿创征文|数据导入与预处理-第3章-pandas基础 1 Pandas概述 1.1 pandas官网阅读指南 1.2 Pandas中的数据结构 1.3 Series 1.3.1 Series简介 1.3.2...概述 1.1 pandas官网阅读指南 pandas的官网地址为:https://pandas.pydata.org/ 官网首页介绍了Pandas, pandas is a fast, powerful...1 True 2 True 4 False dtype: bool pandas.core.series.Series’> bool ----- # 数组做判断之后,返回的是一个由布尔值组成的新的数组...[['one','three']] < 50] print('------') # 多行做判断 # 索引结果保留 所有数据:True返回原数据,False返回值为NaN 输出为: 1.4.3 DataFrame...'商品C':[7,5,5,3]}, index=['第1季度','第2季度','第3季度','第4季度']) df 输出为: # 导入matplotlib库

    15.2K20

    数据导入与预处理-拓展-pandas时间数据处理02

    数据导入与预处理-拓展-pandas时间数据处理02 Pandas时序数据系列博客 Pandas时间序列数据处理 1.好用的Python库 2.Pandas历史 3.时序数据处理 3.1 时序中的基本对象...滑动窗口 2.重采样 Pandas时序数据系列博客 数据导入与预处理-拓展-pandas时间数据处理01 数据导入与预处理-拓展-pandas时间数据处理02 数据导入与预处理-拓展-pandas时间数据处理...03 备注:如果有帮助,欢迎点赞收藏评论一键三联哈~~ Pandas时间序列数据处理 1.好用的Python库 见系列博客1 2.Pandas历史 见系列博客1 3.时序数据处理 见系列博客1 本文部分内容来源为...freq='6H') 4. dt对象 对于Timedelta序列,同样也定义了dt对象,上面主要定义了的属性包括days, seconds, mircroseconds, nanoseconds,它们分别返回了对应的时间差特征...'> 2021-01 pandas.

    2.3K60

    数据导入与预处理-拓展-pandas时间数据处理01

    数据导入与预处理-拓展-pandas时间数据处理01 Pandas时序数据系列博客 Pandas时间序列数据处理 1.好用的Python库 2.Pandas历史 3.时序数据处理 3.1 时序中的基本对象...时间戳的切片和索引 备注:如果感觉有帮助,可以点赞评论收藏~~ Pandas时序数据系列博客 数据导入与预处理-拓展-pandas时间数据处理01 数据导入与预处理-拓展-pandas时间数据处理...02 数据导入与预处理-拓展-pandas时间数据处理03 Pandas时间序列数据处理 1.好用的Python库 Python很强大,有很多的好用的库: 2.Pandas历史 本文主要介绍Pandas...: 注意上面由于传入的是列表,而非pandas内部的Series,因此返回的是DatetimeIndex,如果想要转为datetime64[ns]的序列,需要显式用Series转化: # DatetimeIndex...# errors = 'ignore':不可解析时返回原始输入,这里就是直接生成一般数组 date1 = ['2020-2-1','2020-2-2','2020-2-3','hello world!

    7.3K10

    数据导入与预处理-拓展-pandas时间数据处理03

    数据导入与预处理-拓展-pandas时间数据处理 Pandas时序数据系列博客 1. 时间序列数据 1. 1 时间序列概述 2. 时序数据分析 1.2 数据集导入与处理 1. 查看数据 2....方法7——自回归移动平均模型 Pandas时序数据系列博客 数据导入与预处理-拓展-pandas时间数据处理01 数据导入与预处理-拓展-pandas时间数据处理02 数据导入与预处理-拓展-pandas...2——简单平均数 方法3——移动平均数 方法4——指数平滑法 方法5——霍尔特线性趋势预测 方法6——Holt-Winters季节性预测模型 方法7——自回归移动平均模型 1.2 数据集导入与处理...查看数据 读取训练集数据 import pandas as pd import numpy as np import matplotlib.pyplot as plt #Importing data

    1.4K20
    领券