首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

手把手带你科研入门系列 | PyAOS基础教程十:大数据文件

文章的目标 第一:了解netCDF数据块chunk的概念; 第二:导入dask库,并启动并行处理机制; 第三:计算并绘制高分辨率模型的最大日降雨量。...读取数据,但是这里读取数据的方法,与前面的课程有非常明显的不同(前面用的是xarray.open_dataset来一次性读取nc文件到内存中),这里用到的是xarray.open_mfdataset函数分批读取数据...按照chunk参数指定的500MB的大小,dask并非将7个nc文件的数据一次性读取到系统内存中,而是遵从一块一块数据读取的原则。...如果chunk太小,频繁的调度数据并处理数据将导致效率低下,整体耗时可能依然比较高;如果chunk太大,可能会导致系统运行缓慢,甚至内存泄漏。...5、总结 本文的主要知识点: 学会用dask和xarray库让netCDF数据加载、处理和可视化等操作更加简单; Dask可以通过并行加速数据处理,但需要特别注意数据分块大小。

1.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    xarray系列|数据处理和分析小技巧

    以下内容没有过多代码,对于很新的新手可能不是很友好,但如果你已经接触 xarray 一段时间,对其数据结构和常用函数有所了解,相信会对你有帮助的。...,以前也说到过 xarray系列|教你更高效的进行数据处理和分析。...xarray 做 mask 还是非常方便的,同时结合 regionmask和geopandas几乎可以实现任何想要的功能。...然后转到 xarray,效果也差不多,最后结合 dask,实现了几十倍的效率提升,由原先的近40小时降低到2小时左右。...注意如果涉及到其它库的数据对象时可能会失效。 涉及到大量的数据处理时,可以结合 xarray 和 dask 改善效率,但是 dask 的学习成本稍高一些。

    2.9K30

    xarray系列|数据处理和分析小技巧

    以下内容没有过多代码,对于很新的新手可能不是很友好,但如果你已经接触 xarray 一段时间,对其数据结构和常用函数有所了解,相信会对你有帮助的。...,以前也说到过 xarray系列|教你更高效的进行数据处理和分析。...xarray 做 mask 还是非常方便的,同时结合 regionmask和geopandas几乎可以实现任何想要的功能。...然后转到 xarray,效果也差不多,最后结合 dask,实现了几十倍的效率提升,由原先的近40小时降低到2小时左右。...注意如果涉及到其它库的数据对象时可能会失效。 涉及到大量的数据处理时,可以结合 xarray 和 dask 改善效率,但是 dask 的学习成本稍高一些。

    2.6K22

    【Python 数据科学】Dask.array:并行计算的利器

    Dask.array的分块策略 3.1 数组分块的优势 Dask.array的核心设计思想之一是将数组拆分成小块,并使用延迟计算的方式执行操作。...这种分块策略有以下几个优势: 处理大规模数据:将数据拆分成小块,可以使Dask.array处理比内存更大的数据集。每个小块可以在内存中处理,从而有效地利用计算资源。...3.2 调整分块大小 在Dask.array中,我们可以通过da.rechunk函数来调整数组的分块大小。...默认情况下,Dask.array会自动选择分块大小,但有时候我们可能希望手动调整分块大小以获得更好的性能。...为了减少数据复制,我们可以使用da.rechunk函数来手动调整数组的分块大小。较小的分块大小可以减少中间数组的大小,从而减少数据复制的开销。

    1K50

    数据处理 | 使用cfgrib加载GRIB文件

    支持 Python 2 的 0.9.6.x 系列将继续维护并接收重要的错误修正, 支持 Linux、MacOS 和 Windows,唯一的依赖是 ecCodes 的 C 库 所有支持的平台都可以使用...conda-forge 包安装 延迟和高效读取数据,节省内存占用和磁盘访问 允许使用 dask 进行大于内存的分布式处理 支持将坐标转换为不同的数据模型和命名约定 支持将 GRIB 文件的索引写入磁盘,...以在打开时保存全文件扫描 处于 Alpha 的功能有: 安装 cfgrib 实用程序,该程序可以将 GRIB 文件转换为 to_netcdf,并可以选择将其转换为特定的坐标数据模型 支持将精心设计的 xarray.Dataset...高级特性 cfgrib 的 engine 支持 xarray 的所有只读特性,例如: 使用 xarray.open_mddataset() 将多个 GRIB 文件合并到一个单一的 dataset 使用...dask 处理大于内存的数据集 使用 dask.distributed 进行分布式处理 后续会研究如何使用这些特性。

    9.2K84

    GPM卫星数据下载、读取、绘图,一步到位——GPM-API库

    温馨提示 由于可视化代码过长隐藏,可点击运行Fork查看 若没有成功加载可视化图,点击运行可以查看 ps:隐藏代码在【代码已被隐藏】所在行,点击所在行,可以看到该行的最右角,会出现个三角形,点击查看即可...前言 项目目标 通过Python完成gpm卫星数据下载、读取与绘图 项目方法 在以下内容中,将详细介绍GPM-api库的使用 安装与导入库 !..., product=product, product_type=product_type, version=version, storage=storage, ) 转为xarray...xarray.Dataset> Size: 5GB Dimensions: (cross_track: 49, along_track: 7936,...,难得的是能够转为xarray格式,这大大方便我们进行数据处理 参考链接: https://gpm-api.readthedocs.io/en/latest/03_quickstart.html https

    36710

    国内气象人开发的基于Python的Grads文件解析利器

    xgrads的主要功能是解析Grads文件为xarray对象,可以更好的利用xarray的高维数据分析和可视化功能,加速气象相关的数据处理、分析和可视化。以下是对此库的具体介绍。...ctl文件类似于NetCDF文件的头信息,包含了除了变量数据以外的所有维度、属性和变量的信息。 xgrads是为解析和读取GrADS常用的.ctl文件而设计的。目前,它可以解析各种.ctl文件。...但是,只有常用的原始二进制4D数据集可以使用dask读取,并以xarray.Dataset的形式返回,其他类型的二进制数据,如dtype 是 station 或 grib,将来可能会得到支持。...xgrads 提供了两个函数直接解析 .ctl 相关的二进制文件为 xarray.Dataset 对象,可处理单个文件或批量读取文件: 单文件 from xgrads import open_CtlDataset...的兼容,利用此工具将grads文件解析为xarray对象可以更好的利用xarray的大量函数,更好的进行数据分析和可视化。

    1.8K10

    xarray | 序列化及输入输出

    技巧: xarray 对服务器或本地磁盘文件的延迟加载并不总是有利的。当你要执行高强度计算之前,应先执行 load 方法将数据加载到内存中。...对于文件太大而无法适应内存的数据集来说,这是非常有效的策略。xarray 整合了 dask.array 来提供完整的流计算。...基于 gzip 的数据块压缩可以有效的节省空间,尤其是稀疏数据。当然这会产生很大的性能开销。HDF5 可以完全将块读入内存,其解码速度是 50-100 MB/s。...时间单位 'units' 和 ‘calendar’ 属性控制 xarray 如何将 datetime64 和 timedelta64 数组序列化为数值数组。'...注意: 如果你安装了 dask 的话,可以使用 open_mfdataset 合并多个文件: xr.open_mfdataset('../*.nc') 此函数会自动合并并连接多个文件为一个 xarray

    6.5K22

    NCAR抛弃PyNCL后又一面向地球科学的Python项目

    当前众多学科的科学研究都依赖于计算机,比如气候、天气、大气化学、空间天气等的模拟都需要超算。模拟和观测都会产生的大量数据,分析这些数据同样需要强大算力的支持。...计算环境的飞速发展,云计算和围绕Python构建的开源科学工具生态系统受下,Pythia应运而生,Pythia项目将提供一个公共的、可通过网络访问的培训资源,帮助地球科学家更有效地使用科学Python生态系统和云计算来理解大量的科学数据...Python基础书 此部分提供了Python相关生态各模块的介绍,包括Jupyter、Cartopy、Xarray、Pandas、Matplotlib等,适合刚接触Python的学习。...Python资源库 此部分囊括了大量的Python教程,包括Unidata、Metpy、Xarray、Dask、Matplotlib、WRF-Python等,看下面常常的列表就知道有多少了~日常使用Python...所需要的工具几乎都有了,还有一些特定场景所使用的工具,可以找感兴趣的详细阅读。

    49820

    python-使用pygrib将已有的GRIB1文件中的数据替换为自己创建的数据

    前言 希望修改grib中的变量,用作WRF中WPS前处理的初始场 python对grib文件处理的packages python中对于grib文件的处理方式主要有以下两种库: 1、pygrib 2、xarray...+cfgrib 优缺点对比 优点 缺点 pygrib 读取文件速度快,重写数据方便 查看文件信息相对于cfgrib较麻烦 xarray+cfgrib - 直接将grib文件解析为常见的dataset格式...xarray.open_mfdataset 对于大内存的文件,需要搭配dask使用 读取任意grib 的keys >>> ds = xr.open_dataset('era5-levels-members.grib...将数据写入新的grib文件!有用!...问题解决:将滤波后的数据替换原始grib中的数据再重新写为新的grib文件 pygrib写grib文件的优势在于,写出的grib文件,基本上会保留原始grib文件中的信息,基本的Attributes等也不需要自己编辑

    98410
    领券