首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

删除列中的 NULL 值

图 2 输出的结果 先来分析图 1 是怎么变成图 2,图1 中的 tag1、tag2、tag3 三个字段都存在 NULL 值,且NULL值无处不在,而图2 里面的NULL只出现在这几个字段的末尾。...这个就类似于 Excel 里面的操作,把 NULL 所在的单元格删了,下方的单元格往上移,如果下方单元格的值仍是 NULL,则继续往下找,直到找到了非 NULL 值来补全这个单元格的内容。...有一个思路:把每一列去掉 NULL 后单独拎出来作为一张独立的表,这个表只有两个字段,一个是序号,另一个是去 NULL 后的值。...一个比较灵活的做法是对原表的数据做列转行,最后再通过行转列实现图2 的输出。具体的实现看下面的 SQL(我偷懒了,直接把原数据通过 SELECT 子句生成了)。...,按值在原表的列出现的顺序设置了序号,目的是维持同一列中的值的相对顺序不变。

9.9K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python】基于某些列删除数据框中的重复值

    subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...new_name_3 = name.drop_duplicates(subset='name1',inplace=True) new_name_3 结果中new_name_3的值为空,即设置inplace...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

    20.5K31

    合并excel的两列,为空的单元格被另一列有值的替换?

    一、前言 前几天在Python铂金交流群【逆光】问了一个Pandas数据处理的问题,问题如下:请问 合并excel的两列,为空的单元格被另一列有值的替换。...【Siris】:你是说c列是a列和b列的内容拼接起来是么 【逆光】:是 【Siris】:那你其实可以直接在excel里用CONCAT函数。 【不上班能干啥!】:只在excel里操作,速度基本没啥改变。...我不写,就报这个错 【瑜亮老师】:有很多种写法,最简单的思路是分成3行代码。就是你要给哪一列全部赋值为相同的值,就写df['列名'] = '值'。不要加方括号,如果是数字,就不要加引号。...【瑜亮老师】:3列一起就是df.loc[:, ['列1', '列', '列3'']] = ["值", 0, 0] 【不上班能干啥!】:起始这行没有报错,只是警告,因为你这样操作会影响赋值前的变量。...【瑜亮老师】:你这是把警告转换为异常 【不上班能干啥!】:warnings.filterwarnings('ignore')这个才是忽略 【瑜亮老师】:ignore才是忽略。

    11910

    【Python】基于多列组合删除数据框中的重复值

    最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...一种是写循环依次判断是否重复删重,另一种是用本公众号文章:Python中的集合提到的frozenset函数,一句语句解决该问题。 循环太过繁琐,而且速度较慢。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv

    14.7K30

    数据处理第2节:将列转换为正确的形状

    它涵盖了操纵列以便按照您希望的方式获取它们的工具:这可以是计算新列,将列更改为离散值或拆分/合并列。...mutate中的任何内容都可以是新列(通过赋予mutate新的列名),或者可以替换当前列(通过保持相同的列名)。 最简单的选项之一是基于其他列中的值的计算。...就像第1部分中的select()函数一样,mutate()有变种: *mutate_all()将根据您的进一步说明改变所有列 *mutate_if()首先需要一个返回布尔值的函数来选择列。...如果我想在几分钟内完成,我可以使用mutate_at()并将包含列的所有'sleep'包装在vars()中。 其次,我在飞行中创建一个函数,将每个值乘以60。...NA 函数na_if()将特定值转换为NA。

    8.1K30

    如何使用Excel将某几列有值的标题显示到新列中

    如果我们有好几列有内容,而我们希望在新列中将有内容的列的标题显示出来,那么我们怎么做呢? Excel - TEXTJOIN function 1....- - - - 4 - - - 在开始,我们曾经使用INDEX + MATCH的方式,但是没有成功,一直是N/A https://superuser.com/questions/1300246/if-cell-contains-value-then-column-header...所以我们后来改为TEXTJOIN函数,他可以显示值,也可以显示值的标题,还可以多个列有值的时候同时显示。...- - 4 - - - 15 Year 5 - - - - 5 - - - =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),$B$1:$I$1,"")) 如果是想要显示值,...则: =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),B2:I2,"")) 其中,ISNUMBER(B2:I2)是判断值是不是数字,可以根据情况改成是不是空白ISBLANK

    11.3K40

    问与答112:如何查找一列中的内容是否在另一列中并将找到的字符添加颜色?

    引言:本文整理自vbaexpress.com论坛,有兴趣的朋友可以研阅。...Q:我在列D的单元格中存放着一些数据,每个单元格中的多个数据使用换行分开,列E是对列D中数据的相应描述,我需要在列E的单元格中查找是否存在列D中的数据,并将找到的数据标上颜色,如下图1所示。 ?...A:实现上图1中所示效果的VBA代码如下: Sub ColorText() Dim ws As Worksheet Dim rDiseases As Range Dim rCell...End If Loop Next iDisease Next rCell End Sub 代码中使用Split函数以回车符来拆分单元格中的数据并存放到数组中...,然后遍历该数组,在列E对应的单元格中使用InStr函数来查找是否出现了该数组中的值,如果出现则对该值添加颜色。

    7.2K30

    Pandas中如何查找某列中最大的值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    40110

    Mysql与Oracle中修改列的默认值

    于是想到通过default来修改列的默认值: alter table A modify column biz default 'old' comment '业务标识 old-老业务, new-新业务'...找后台运维查生产数据库,发现历史数据的biz字段还是null 原因: 自己在本地mysql数据库试了下,好像的确是default没法修改历史数据为null 的值。这就尴尬了。...看起来mysql和oracle在default的语义上处理不一样,对于oracle,会将历史为null的值刷成default指定的值。...总结 1. mysql和oracle在default的语义上存在区别,如果想修改历史数据的值,建议给一个新的update语句(不管是oracle还是mysql,减少ddl执行的时间) 2....即使指定了default的值,如果insert的时候强制指定字段的值为null,入库还是会为null

    13.2K30

    Excel公式练习38: 求一列中的数字剔除掉另一列中的数字后剩下的数字

    列B中的任意数字都可以在列A中找到。 3. 在列A或列B已存放数字的单元格之间不能有任何空单元格。 4. 在列C中的数字是从列A中的数字移除列B中的数字在列A中第一次出现的数字后剩下的数字。 5....换句话说,列B和列C中的数字合起来就是列A中的数字。 ? 图1 在单元格D1中的数字等于列A中的数字数量减去列B中的数字数量后的值,也就是列C中数字的数量。...公式的思路就是构造一个数组,能够实现在List1和List2之间执行MATCH函数查找时,列C中的数值就是找不到的值,返回FALSE。 然而,实现起来并不是想像中的那么简单。...;0;0;0;0;0;0;0} 这样,将原来List2中的元素转换成了由唯一值构成的数组。...本案例关键技术:将统计数分配给单元格区域中的每个值,有效地将含有重复值的单元格区域中的值变成唯一值,这是一项很有用的技术。

    3.4K20

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...方括号内的列名是字符串,因此我们必须在其两侧使用引号。尽管它需要比点符号更多的输入,但这种方法在任何情况下都能工作。因为我们用引号将字符串(列名)括起来,所以这里也允许使用带空格的名称。...语法如下: df.loc[行,列] 其中,列是可选的,如果留空,我们可以得到整行。由于Python使用基于0的索引,因此df.loc[0]返回数据框架的第一行。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...记住这种表示法的一个更简单的方法是:df[列名]提供一列,然后添加另一个[行索引]将提供该列中的特定项。 假设我们想获取第2行Mary Jane所在的城市。

    19.2K60

    JavaScript 中的二进制散列值和权限设计

    中的位运算符来控制权限。...位运算符指的是二进制位的运算,先将十进制数转成二进制后再进行运算。 在二进制位运算中,1表示true,0表示false。...转换为 0,0 转换为 1 按位左移 A 将所有二进制位统一向左移动指定的位数,并在最右侧补 0 按位右移 A >> B 按位右移(有符号右移):将所有二进制位统一向右移动指定的位数,并拷贝最左侧的位来填充左侧...那么我们可以定义4个二进制变量表示:// 所有权限码的二进制数形式,有且只有一位值为 1,其余全部为 0const READ = 0b1000 // 可读const WRITE = 0b0100 //...,有一定的前提条件:每种权限码都是唯一的,有且只有一位值为 1。

    14810

    报错:“来自数据源的String类型的给定值不能转换为指定目标列的类型nvarchar。”「建议收藏」

    大家好,又见面了,我是你们的朋友全栈君。 解决sql server批量插入时出现“来自数据源的String类型的给定值不能转换为指定目标列的类型nvarchar。”...问题 问题的原因:源的一个字段值长度超过了目标数据库字段的最大长度 解决方法:扩大目标数据库对应字段的长度 一般原因是源的字段会用空字符串填充,导致字符串长度很大,可以使用rtrim去除 解决sql server...批量插入时出现“来自数据源的String类型的给定值不能转换为指定目标列的类型smallint。”...问题 问题的原因:源的一个字段类型为char(1),其中有些值为空字符串,导数据时不能自动转换成smallint类型 解决方法:将char类型强转为smallint类型之后再导入数据。

    1.8K50

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...values_array = df[["label"]].values 这行代码从 DataFrame df 中提取 “label” 列,并将其转换为 NumPy 数组。....结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    15700
    领券