首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

榕树集--新型抗生素的发现

在本文中研究团队提出了一种基于深度学习的可解释方法,用于发现新型抗生素结构。通过神经网络学到的抗生素活性相关的化学亚结构被用于预测抗生素的结构类别。研究团队通过图神经网络预测了超过1200万个化合物的抗生素活性和毒性,并通过可解释的图算法确定了具有高抗生素活性和低毒性的化合物的亚结构理由。实验验证表明,具有特定亚结构的化合物对金黄色葡萄球菌具有抗生素活性,其中一种结构类别对耐药性较强的金黄色葡萄球菌和肠球菌具有选择性。这一方法为深度学习引导的抗生素结构类别发现提供了新途径,并强调了机器学习在药物发现中的可解释性和对选择性抗生素活性的化学基础的洞察力。

01

J Cheminform|使用具有自适应训练数据的GANs搜索新分子

今天给大家介绍的是美国橡树岭国家实验室的Andrew E. Blanchard等人于2021.2.23发表在Journal of Cheminformatics上的文章Using GANs with adaptive training data to search for new molecules。药物发现的过程涉及到对所有可能的化合物的空间进行搜索,生成对抗网络(GAN)为探索化学空间和优化已知化合物提供了一个有力工具。然而,训练GANs的标准方法可能导致模式崩溃,其中生成器主要产生与训练数据的一小部分密切相关的样本。相反,寻找新化合物需要超越原始数据的探索。在本文中,作者提出了一种训练GANS的方法,它促进增量探索,并利用遗传算法的概念限制模式崩溃的影响。在此方法中,来自生成器的有效样本被用来替换来自训练数据的样本。在替换过程中,作者考虑随机和引导选择以及重组。通过跟踪训练过程中产生的新化合物的数量,结果表明,对训练数据的更新大大优于传统的方法,增加了GANs在药物发现中的潜在应用。

03

Nat. Methods | MSNovelist:从质谱生成小分子结构的新方法

今天给大家介绍来自苏黎世联邦理工学院和耶拿弗里德里希-席勒-耶拿大学团队发表在Nature Methods上的文章,文章提出了一种基于encoder-decoder神经网络的从质谱生成小分子结构的新方法:MSNovelist,它首先使用SIRIUS和CSI:FingerID来分别从质谱中预测出分子的指纹和表达式,然后将其输入到一个基于encoder-decoder的RNN模型来生成分子的SMILES。作者使用来自Global Natural Product Social Molecular Networking网站上的3863个质谱数据集进行评估,MSNovelist重现出了61%的分子结构,这些重现的分子结构都是未在训练集中见过的;并且使用CASMI2016数据集进行了评估,MSNovelist重现了64%的分子结构。最后,本文将MSNovelist应用在苔藓植物质谱数据集上进行验证,结果表明MSNovelist非常适合在分析物类别和新化合物表现不佳的情况下注释质谱对应的分子。

03

NeurIPS 2021|分子的三维构象集的扭转几何生成

今天给大家介绍的是NeurIPS 2021上一篇来自MIT的论文。在化学信息学和药物发现领域中,从分子图中预测分子的三维构象集具有关键的作用,但现有的生成模型存在严重的问题,这包括缺乏对重要分子几何元素的建模,优化阶段容易出现累积误差,需要基于经典力场或计算代价昂贵的方法进行结构微调。作者团队提出GEOMOL模型,一种端到端、非自回归和SE(3)不变的机器学习方法来生成低能分子三维构象的分布。利用消息传递神经网络(MPNN)捕捉局部和全局信息的能力,我们能预测局部原子的3D结构和扭转角,这样的局部预测即可用于计算训练损失,也可用于测试时的完整构象。作者团队设计了一个非对抗性的基于损失函数的最优传输来促进多样的构象生成。GEOMOL优于流行的开源、商业或最先进的ML模型,同时速度得到了显著提升。我们希望这种可微的三维结构生成器能对分子建模和相关应用产生重大影响。

02

Knowledge-based BERT: 像计算化学家一样提取分子特征的方法

今天介绍一篇浙江大学智能创新药物研究院侯廷军教授团队、中南大学曹东升教授团队和腾讯量子计算实验室联合在Briefings in Bioinformatics发表的一篇论文“Knowledge-based BERT: a method to extract molecular features like computational chemists”。本文提出了一种新的预训练策略,通过学习由计算化学家预定义的分子特征和原子特征,使得模型能够像计算化学家一样从SMILES中提取分子特征。K-BERT在多个成药性数据集上表现了优异的预测能力。此外,由K-BERT 生成的通用指纹 K-BERT-FP 在 15个药物数据集上表现出与 MACCS 相当的预测能力。并且通过进一步预训练,K-BERT-FP还可以学习到传统二进制指纹(如MACCS和ECFP4)无法表征的分子大小和手性信息。

03

J. Chem. Inf. Model. | 增强指纹图注意力网络(FinGAT)模型用于抗生素发现

今天为大家介绍的是来自JunJie Wee和Kelin Xia团队的一篇关于抗生素发现的论文。人工智能(AI)技术在改变抗生素发现行业方面具有巨大潜力。高效和有效的分子特征化是实现高准确性学习用于抗生素发现的模型的关键。作者提出了一种通过结合基于序列的2D指纹和基于结构的图表示的指纹增强的图注意力网络(FinGAT)模型。在特征学习过程中,序列信息转化为指纹向量,结构信息通过GAT模块编码为另一个向量。这两个向量被连接并输入到多层感知机(MLP)进行抗生素活性分类。模型经过广泛的测试并与现有模型进行比较。研究发现, FinGAT在抗生素发现中可以胜过各种最先进的GNN模型。

01

Conformator使用—小分子构象生成工具

计算机辅助药物设计方法,例如:对接,药效团搜索,3D数据库搜索以及3D-QSAR模型的创建,需要构象集合来处理小分子的灵活性。Conformator,这是一种基于知识的算法,用于生成构象集合。在测试分子的99.9%的情况下,Conformator凭借其在输入格式,分子几何结构和大环化合物处理方面的鲁棒性而脱颖而出。有了一组扩展的扭转角采样规则,一种用于生成大环构象异构体的新算法以及一种用于构象异构体装配的新聚类算法,Conformator达到了中位数最小均方根偏差(在蛋白质结合的配体构象之间测量)且最多包含250个集合为0.47Å,与排名最高的商业算法OMEGA没有显着差异,并且比包括RDKit DG算法在内的7种免费算法明显更高的准确性。

02
领券