首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

将另一个df中的列作为列插入到另一个df中。塞了好几个小时!与不同列合并(联接)

将另一个df中的列作为列插入到另一个df中,可以使用pandas库中的merge()函数或join()函数来实现。这两个函数可以根据指定的列将两个DataFrame对象进行合并。

merge()函数可以根据指定的列将两个DataFrame对象进行合并,并且可以指定合并方式(如内连接、左连接、右连接、外连接),具体使用方法如下:

代码语言:txt
复制
import pandas as pd

# 创建两个DataFrame对象
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'C': [7, 8, 9]})

# 使用merge()函数将df2的列C插入到df1中
merged_df = pd.merge(df1, df2, left_index=True, right_index=True)

# 打印合并后的DataFrame对象
print(merged_df)

join()函数可以根据指定的列将两个DataFrame对象进行合并,并且可以指定合并方式(如内连接、左连接、右连接、外连接),具体使用方法如下:

代码语言:txt
复制
import pandas as pd

# 创建两个DataFrame对象
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'C': [7, 8, 9]})

# 使用join()函数将df2的列C插入到df1中
joined_df = df1.join(df2)

# 打印合并后的DataFrame对象
print(joined_df)

以上代码中,df1和df2分别是两个要合并的DataFrame对象,merge()函数和join()函数都可以将df2的列插入到df1中。具体的合并方式可以根据实际需求进行调整,例如可以通过指定left_on和right_on参数来指定合并的列,通过指定how参数来指定合并方式。

这种操作在数据分析和数据处理中非常常见,可以用于将两个数据集合并起来,以便进行进一步的分析和处理。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

直观地解释和可视化每个复杂的DataFrame操作

作为另一个示例,当级别设置为0(第一个索引级别)时,其中的值将成为列,而随后的索引级别(第二个索引级别)将成为转换后的DataFrame的索引。 ?...可以按照与堆叠相同的方式执行堆叠,但是要使用level参数: df.unstack(level = -1)。 Merge 合并两个DataFrame是在共享的“键”之间按列(水平)组合它们。...此键允许将表合并,即使它们的排序方式不一样。完成的合并DataFrame 默认情况下会将后缀_x 和 _y添加 到value列。 ?...默认情况下,合并功能执行内部联接:如果每个DataFrame的键名均未列在另一个键中,则该键不包含在合并的DataFrame中。...使用联接时,公共键列(类似于 合并中的right_on 和 left_on)必须命名为相同的名称。

13.3K20

《Python for Excel》读书笔记连载11:使用pandas进行数据分析之组合数据

在下面的示例中,创建了另一个数据框架more_users,并将其附加到示例数据框架df的底部: 注意,现在有了重复的索引元素,因为concat将数据粘在指定的轴(行)上,并且只对齐另一个轴(列)上的数据...联接(joining)和合并(merging) 当联接(join)两个数据框架时,可以将每个数据框架的列组合成一个新的数据框架,同时依靠集理论来决定行的情况。...左联接(leftjoin)获取左数据框架df1中的所有行,并在索引上匹配右数据框架df2中的行,在df2没有匹配行的地方,pandas将填充NaN。左联接对应于Excel中的VLOOKUP情况。...右联接(rightjoin)获取右表df2中的所有行,并将它们与df1中索引相同的行相匹配。...表5-5.联接类型 让我们看看它们在实践中是如何运作的,将图5-3中的示例付诸实践: 如果要在一个或多个数据框架列上联接而不是依赖索引,那么使用“合并”(merge)而不是“联接”(join)。

2.5K20
  • 2020年入门数据分析选择Python还是SQL?七个常用操作对比!

    在pandas中的等价操作为 ? 注意,在上面代码中,我们使用size()而不是count() 这是因为count()将函数应用于每一列,并返回每一列中非空记录的数量!...六、连接 在pandas可以使用join()或merge()进行连接,每种方法都有参数,可让指定要执行的联接类型(LEFT,RIGHT,INNER,FULL)或要联接的列。...'value': np.random.randn(4)}) 内连接 内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行,在SQL中实现内连接使用INNER JOIN SELECT * FROM...merge()提供了一些参数,可以将一个DataFrame的列与另一个DataFrame的索引连接在一起? ?...七、合并 SQL中UNION操作用于合并两个或多个SELECT语句的结果集,UNION与UNION ALL类似,但是UNION将删除重复的行。

    3.6K31

    合并多个Excel文件,Python相当轻松

    标签:Python与Excel,pandas 下面是一个应用场景: 我在保险行业工作,每天处理大量数据。有一次,我受命将多个Excel文件合并到一个“主电子表格”中。...保险ID’) 第一次合并 这里,df_1称为左数据框架,df_2称为右数据框架,将df_2与df_1合并基本上意味着我们将两个数据帧框架的所有数据合并在一起,使用一个公共的唯一键匹配df_2到df_1中的每条记录...注意,在第一个Excel文件中,“保险ID”列包含保险编号,而在第二个Excel文件中,“ID”列包含保险编号,因此我们必须指定,对于左侧数据框架(df_1),希望使用“保险ID”列作为唯一键;而对于右侧的数据框架...图6:合并数据框架,共21行和8列 第二次合并 我们获取第一次合并操作的结果,然后与另一个df_3合并。...最终数据框架中只有8行,这是因为df_3只有8条记录。默认情况下,merge()执行”内部”合并,使用来自两个数据框架的键的交集,类似于SQL内部联接。

    3.8K20

    R语言数据框深度解析:从创建到数据操作,一文掌握核心技能

    数据框,data.frame,可能是大家最常用的数据结构了。数据读进来一般默认都是数据框结构。...数据框由不同的行和列构成,不同的列可以是不同类型(数值型、字符型、逻辑型等)的数据,比如可以其中一列是数值型,另一列是逻辑型,另一列是字符型,等。但是同一列中必须是相同的类型。...df$Name # 获取“Name”列 df[1, 2] # 取第1行第2列的值 df[, 1:3] # 取所有行,以及第1列到第3列 df[c(1,3)] # 取所有行,以及第...拼接列:把列拼起来,也就是对多个数据框水平堆叠,也就是在一个数据框的右侧添加另一个数据框,要求行数相同。...数据框合并 具有共同信息的两个数据框可以合并到一个数据框中。

    18010

    机器学习系列:(四)从线性回归到逻辑回归---续篇

    -the-rest方法实现多类分类,就是把多类中的每个类都作为二元分类处理。分类器预测样本不同类型,将具有最大置信水平的类型作为样本类型。LogisticRegression()通过one-vs....这样的例子太普遍了,比如统计班上同学一周7天里哪天有空。每个同学都会在周一到周日这7天里,根据自己的情况分别打勾。再比如常见的博客文章分类标签,一篇文章一般都有好几个标签等等。...这个问题确保了单标签问题和多标签问题有同样的训练集,只是忽略了标签之间的关联关系。 ? 多标签分类效果评估 多标签分类效果评估与多标签分类效果评估方式不同。...广义线性回归模型通过联接方程将解释变量和响应变量联接起来,和普通线性回归不同,这个方程可能是非线性的。...我们重点介绍了逻辑联接方程,其图象是一种S曲线,对任意实数的返回值都在在{0,1}之间,如群体生长曲线。 之后,我们介绍了逻辑回归,一种通过逻辑联接方程联接解释变量与呈伯努力分布的响应变量的关系。

    58960

    Pandas图鉴(三):DataFrames

    最后一种情况,该值将只在切片的副本上设置,而不会反映在原始df中(将相应地显示一个警告)。 根据情况的背景,有不同的解决方案: 你想改变原始数据框架df。...1:1的关系joins 这时,关于同一组对象的信息被存储在几个不同的DataFrame中,而你想把它合并到一个DataFrame中。 如果你想合并的列不在索引中,可以使用merge。...例如,插入一列总是在原表进行,而插入一行总是会产生一个新的DataFrame,如下图所示: 删除列也需要注意,除了del df['D']能起作用,而del df.D不能起作用(在Python层面的限制...要将其转换为宽格式,请使用df.pivot: 这条命令抛弃了与操作无关的东西(即索引和价格列),并将所要求的三列信息转换为长格式,将客户名称放入结果的索引中,将产品名称放入其列中,将销售数量放入其 "...它将索引和列合并到MultiIndex中: eset_index 如果你想只stack某些列,你可以使用melt: 请注意,熔体以不同的方式排列结果的行。

    44420

    对比MySQL,学会在Pandas中实现SQL的常用操作

    df[['总费用', '小费', '是否吸烟', '吃饭时间']].head(5) 结果如下: ? 注意:调用不带列名列表的DataFrame将显示所有列(类似于SQL的 *)。...groupby()通常是指一个过程,在该过程中,我们希望将数据集分成多个组,应用某些功能(通常是聚合),然后将各组组合在一起。 常见的SQL操作是获取整个数据集中每个组中的记录数。...这是因为count()将函数应用于每一列,并返回每一列中的记录数。 df.groupby('性别').count() 结果如下: ? 如果想要使用count()方法应用于单个列的话,应该这样做。...例如,假设我们要查看小费金额在一周中的各个天之间有何不同--->agg()允许您将字典传递给分组的DataFrame,从而指示要应用于特定列的函数。...默认情况下,join()将在其索引上联接DataFrame。每个方法都有参数,可让您指定要执行的联接类型(LEFT,RIGHT,INNER,FULL)或要联接的列(列名或索引)。

    2.5K20

    数据导入与预处理-第6章-01数据集成

    例如,如何确定一个数据库中的“custom_id”与另一个数据库中的“custome_number”是否表示同一实体。 实体识别中的单位不统一也会带来问题。...例如,重量属性在一个系统中采用公制,而在另一个系统中却采用英制;价格属性在不同地点采用不同的货币单位。这些语义的差异为数据集成带来许多问题。...2 基于Pandas实现数据集成 pandas中内置了许多能轻松地合并数据的函数与方法,通过这些函数与方法可以将Series类对象或DataFrame类对象进行符合各种逻辑关系的合并操作,合并后生成一个整合的...常用的合并数据的函数包括: 2.1 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。...没有A、B两个列索引,所以这两列中相应的位置上填充了NaN。

    2.6K20

    pandas

    中series与DataFrame区别 Series是带索引的一维数组 Series对象的两个重要属性是:index(索引)和value(数据值) DataFrame的任意一行或者一列就是一个Series...不同的是,DataFrame包括索引index和表头columns:   其中data可以是很多类型: 包含列表、字典或者Series的字典 二维数组 一个Series对象 另一个DataFrame对象...5.dataframe保存进excel中多个sheet(需要注意一下,如果是在for循环中,就要考虑writer代码的位置了) # 将日流量写入‘逐日流量’,将位置写入‘格网中的经纬度...#将date列中的日期转换为没有时分秒的日期 df.to_excel("dates.xlsx") 向pandas中插入数据 如果想忽略行索引插入,又不想缺失数据与添加NaN值,建议使用 df...in range(10): result = fk.name_female() data.append(result) # 创建一个 DataFrame 对象,将列表作为一列数据

    13010

    手把手教你用 pandas 分析可视化东京奥运会数据!

    本文将基于东京奥运会奖牌榜数据,使用 pandas 进行数据分析可视化实战(文末可以下载数据与源码) 数据读取 首先是奥运会奖牌数据的获取,虽然有很多接口提供数据,但是通过奥运会官网拿到的数据自然是最可靠的...好在修改列属性并不是什么困难的事情,一行代码轻松搞定(7-12) df2['获奖时间'] = pd.to_datetime(df2['获奖时间']) 数据合并 通过观察可以发现,df2并没有 国家名称...列,但是其与 df1 有一个共同列 国家id 为了给 df2 新增一列 国家名称 列,一个自然的想法就是通过 国家id 列将两个数据框进行合并,在 pandas 中实现,也不是什么困难的事情 temp...(主要体现在小时上),所以我们干脆将时间精确到天,这里可以使用 map 对一整列进行操作 def time_format(x): return x.strftime("%m月%d日")...,所以这里使用另一个第三方库 bar_chart_race 进行绘制 以上就是基于 2020年东京奥运会 数据进行的一系列数据分析可视化流程,基本涉及到利用 Pandas 进行数据分析的主要操作,是一份不可多得的简单易懂

    1.5K42

    【Python环境】Python中的结构化数据分析利器-Pandas简介

    Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。...二者与Python基本的数据结构List也很相近,其区别是:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率。...只是思路略有不同,一个是以列为单位构建,将所有记录的不同属性转化为多个Series,行标签冗余,另一个是以行为单位构建,将每条记录转化为一个字典,列标签冗余。...(以单独列名作为columns的参数),也可以进行多重排序(columns的参数为一个列名的List,列名的出现顺序决定排序中的优先级),在多重排序中ascending参数也为一个List,分别与columns...('A').sum()#按照A列的值分组求和df.groupby(['A','B']).sum()##按照A、B两列的值分组求和 对应R函数: tapply() 在实际应用中,先定义groups,然后再对不同的指标指定不同计算方式

    15.1K100

    【如何在 Pandas DataFrame 中插入一列】

    前言:解决在Pandas DataFrame中插入一列的问题 Pandas是Python中重要的数据处理和分析库,它提供了强大的数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。...在实际数据处理中,我们经常需要在DataFrame中添加新的列,以便存储计算结果、合并数据或者进行其他操作。...示例 1:插入新列作为第一列 以下代码显示了如何插入一个新列作为现有 DataFrame 的第一列: import pandas as pd #create DataFrame df = pd.DataFrame...不同的插入方法: 在Pandas中,插入列并不仅仅是简单地将数据赋值给一个新列。...通过本文,我们希望您现在对在 Pandas DataFrame 中插入新列的方法有了更深的了解。这项技能是数据科学和分析工作中的一项基本操作,能够使您更高效地处理和定制您的数据。

    1.1K10

    SQL Server 2012学习笔记 (三) ----- SQL Server SQL语句

    :   表的合并操作将两个表的行合并到了一个表中,且不需要对这些行作任何更改。   ...合并操作与联接相似,因为它们都是将两个表合并起来形成另一个表的方法。然而,它们的合并方法有本质上的不同,结果表的形状如下所示。 注:A和B分别代表两个数据源表。 ?   ...使用UNION合并不同类型的数据。合并有不同列数的两个表,还可以进行多表合并。...嵌套查询是指将一个查询块嵌套在另一个查询块的WHERE子句或HAVING短语的条件中的查询。嵌套查询中上层的查询块称为外侧查询或父查询,下层查询块称为内层查询或子查询。...1)规则的基本操作: 创建规则 把自定义规则绑定到列 验证规则作用 取消规则绑定 删除规则 2)默认的基本操作 创建默认 把自定义默认绑定到列 验证默认作用 取消默认绑定 删除默认

    6.5K20

    R数据科学|第九章内容介绍

    本章中的很多概念都和SQL中的相似,只是在dplyr中的表达形式略微不同。一般来说,dplyr 要比 SQL 更容易使用。...处理关系数据有三类操作: 合并连接:向数据框中加入新变量,新变量的值是另一个数据框中的匹配观测。 筛选连接:根据是否匹配另一个数据框中的观测,筛选数据框中的观测。...合并连接可以将两个表格中的变量组合起来,它先通过两个表格的键匹配观测,然后将一个表格中的变量复制到另一个表格中。...下面借助图形来帮助理解连接的原理: ? 有颜色的列表示作为“键”的变量:它们用于在表间匹配行。灰色列表示“值”列,是与键对应的值。...筛选连接 筛选连接匹配观测的方式与合并连接相同,但前者影响的是观测,而不是变量。筛选连接有两种类型: semi_join(x,y):保留x表中与y表中的观测相匹配的所有观测。 ?

    1.6K30

    【数据处理包Pandas】DataFrame对象的合并

    它们的主要区别: concat支持多个 DataFrame 对象的水平和垂直排放,即可以列合并也可以行合并;但与merge不同,它的合并不基于列值匹配。...join也是列合并,但它的合并不是基于列值匹配而是基于行索引/列索引的匹配,特定情况下与concat做列合并的效果相当。...pd.concat既可以行合并,也可以列合并;并且沿着哪个轴合并,合并对象上该轴的索引将全部保留;例如按行合并(对应于axis=0),此时参与合并的所有 DataFrame 对象的行索引则全部保留,并且由上到下按序排列...下面的示例比较merge与concat,可以看出: (1)merge主要基于列值匹配而进行列合并,类似于SQL中的连接操作,而concat并没有基于列值匹配进行合并。...on:指定要合并的列(或列的名称)。如果两个 DataFrame 中的列名相同,并且没有指定该参数,则将这些列作为合并的键。

    9500

    Pandas个人操作练习(1)创建dataframe及插入列、行操作

    大家好,又见面了,我是你们的朋友全栈君。...= pd.DataFrame(data = data) 二、dataframe插入列/多列 添加一列数据,,把dataframe如df1中的一列或若干列加入另一个dataframe,如df2 思路:...先把数据按列分割,然后再把分出去的列重新插入 df1 = pd.read_csv(‘example.csv’) (1)首先把df1中的要加入df2的一列的值读取出来,假如是’date’这一列...date = df1.pop(‘date’) (2)将这一列插入到指定位置,假如插入到第一列 df2.insert(0,’date’,date) (3)默认插入到最后一列...关键点是axis=1,指明是列的拼接 三、dataframe插入行 插入行数据,前提是要插入的这一行的值的个数能与dataframe中的列数对应且列名相同,思路:先切割,再拼接。

    2.1K20

    数据库性能优化之SQL语句优化

    Order by语句对要排序的列没有什么特别的限制,也可以将函数加入列中(象联接或者附加等)。任何在Order by语句的非索引项或者有计算表达式都将降低查询速度。...(15) 用EXISTS替代IN、用NOT EXISTS替代NOT IN: 在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS...在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历)....另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.。那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效....然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000 条具有相同键值的记录,当然它们都是空!

    5.7K20
    领券