首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R︱高效数据操作——data.table包(实战心得、dplyr对比、key灵活用法、数据合并)

    (ID)] 三种数据筛选的方式,dplyr包、base基础包、data.table包。其中,dplyr是select语句,data.table中要注意.()的表达方式。...="Hospice"] (3)还有一些复杂结构: dt[a=='B' & c2>3, b:=100] #其他结构 在dt数据集中,筛选a变量等于"B",c2变量大于3,同时将添加b变量,数值等于...DT数据集按照x分组,然后计算v变量的和、最小值、最大值。 (2)dplyr函数利用%>%(链式操作)来改进: 链式操作是啥意思呢?...2、on=""方式 DT[X, on="x"] 这里的on指的是DT变量中的变量名称,X还是按照key,如果没设置就会默认第一行为key。...,除了by中的变量的所有元素。.

    9.3K43

    R数据科学-1(dplyr)

    忘记保存,白费时间 效率低,时间长 现在,我们将学习对处理数据有用的两个软件包: dplyr是用于简化表格数据操作的软件包。 tidyr使您可以在不同的数据格式之间快速转换。...但是往往会打印出来很长,tidyr中的tibble就解决了此问题,直接简单的看到数据结构及变量类型。...head(mtcars),可以看到数据的前面6行,属于数据的一个预览。但是看不到各个列的属性。 %>%管道函数,其实就是将f()写在了数据的后面,下面示例的两个操作,都得到df,效果一样。...只不过 %>%看起来更简单,将mtcars赋予新的tibble。 df以后的输出,很简洁,能看到32*11的数据行与列,也能看到各列的属性。...::select(new) %>% pull() 有时候,会需要将连续性的变量,转换成分类变量。

    1.6K20

    快速掌握R语言中类SQL数据库操作技巧

    行3列矩阵 #byrow = TRUE 是控制矩阵中的数据c(1,2,3, 11,12,13)按照行的顺序排列,默认按照列排列 #dimnames = list(c("row1", "row2"), c...("C.1", "C.2", "C.3")) 定义矩阵行名和列名 1.3 数据框 DataFrame: data.frame() #其中" 的意思,将向量c(11:15)赋值给对象x >...可参考↓↓ R语言 | 第一部分:数据预处理 7.数据筛选和8.抽样 R语言数据管理与dplyr、tidyr | 第4讲 5 dplyr中5.1筛选filter和5.3选择select R...4.3 数值分段 数值分段,就是把一个连续型的数值型数据,按区间分割为因子类型的离散型数据。...此处仅讲述aggregate数据分组计算内容,更多分组计算内容 参考→《R语言 分组计算,不止group_by》 dplyr包中的group_by联合summarize group_by和summarise

    5.7K20

    做COX生存分析是否需要把连续值变成高低二分组?

    经过debug,发现他在批量的时候使用的是基因的连续值,单独可视化的时候用的基因二分组。 那么cox生存分析时,将因素的连续值变成二分组有什么影响呢?...Cox回归模型可以处理连续变量,但有时将连续变量转化为分类变量可以提供更明确的临床意义和更易解释的结果。...信息损失:将连续变量转化为二分组会丢失变量的精细度,可能导致信息损失。这种信息损失可能会影响模型的预测能力和结果的显性。 截断值选择:在将连续变量转化为二分组时,截断值的选择至关重要。...在转化为二分组后,如果组内样本量过小,可能会导致统计功效不足,影响结果的显性。 模型拟合度:连续变量和二分组变量在模型中的拟合度可能不同。...例如,如果连续变量的Cox模型中包含了非线性项或者交互项,而二分组模型中没有,那么结果的显性可能会有所不同。 综上所述,将连续变量转化为二分组后,结果的显性发生改变可能是由于多种因素共同作用的结果。

    13210

    TCGA生存分析②

    但这并不能很好地评估连续性定量变量的对生存的影响。比如你的某一个node属性取值范围是0-33,这将导致生存曲线图上出现33条生存曲线。如果遇到分组过多或者想要评估多个变量如何协同以影响生存。...例如,比如当希望同时检查种族和社会经济状况对生存的影响时就可能需要换种生存分析方法。 Cox PH回归可以评估分类变量和连续变量的影响,并且可以一次模拟多个变量的影响。...(对于该变量的每个单位增加)。...基于截断值我们可以添加labels =选项来标记我们创建的分组,例如,'yong'和'old'。 最后,我们可以将结果分配给肺数据集中的新对象。...请记住,Cox回归是分析连续变量在其分布范围内,其中Kaplan-Meier图上的对数秩检验值可以根据您对连续变量的截断值分组而改变。

    1.2K40

    生信入门马拉松之R语言基础-脚本项目管理、条件循环、表达矩阵和一丢丢数据挖掘(Day 7)

    save(pd,exp,gpl,file = "steploutput,Rdata"),这句代码将几个第一个脚本有用的变量保存到Rdata文件中,下次使用这些变量时直接加载load这个Rdata文件即可...变量,自带变量名称,不需要再次赋值,也没有参数。undefined表格文件需要赋值,读取参数不同导致读取结果不同,不能在后续代码中同等处理。...加载test1.Rdata,将两个数据框按照probe_id列连接在一起,按共同列取交集load("test1.Rdata")library(dplyr)merge1 行是一个基因在所有样品里的表达,一列是一个样本里所有基因的表达。在表达矩阵中,寻找在不同组有表达差异的基因。...7.5.3 箱线图的应用单个基因在两组之间表达量的差异可视化。分组信息:是一个有重复值的离散型的向量,分组向量的元素和表达矩阵的列是一一对应的。

    19000

    R&Python Data Science 系列:数据处理(3)

    在某种分组排序规则之后,row_number()生成一个连续不重复的编码,min_rank()生成一个不连续的编码,但是对相同的记录编码相同,而dense_rank()生成一个连续的编码,相同记录有相同的编码...3.2 偏移函数 两个偏移函数lead()和lag(): lead(column,n):按照某种分组排序规则之后,向下取某列数据的第n行记录 lag(column,n):按照某种分组排序规则之后...):按照某种规则分组排序后(可选),取最后一行数据记录 nth(column,n):按照某种规则分组排序后(可选),取第n行的记录 n():按照某种规则分组排序后(可选),count计数...注意:Python中n()函数需要传入参数,R中不需要传入参数;Python中输出列按照字段名称升序排列,R中输出的列按照书写顺序输出。...5 总结 数据处理1-3,主要介绍了Python中dfply和R中dplyr包中的数据处理函数,几乎满足数据预处理中筛选变量、衍生变量以及计算一些统计量的需求。

    1.3K20

    tidyverse|数据分析常规操作-分组汇总(sumamrise+group_by)

    使用tidyverse进行简单的数据处理: 盘一盘Tidyverse| 筛行选列之select,玩转列操作 盘一盘Tidyverse| 只要你要只要我有-filter 筛选行 Tidyverse|数据列的分分合合...,一分多,多合一 Tidyverse| XX_join :多个数据表(文件)之间的各种连接 本次介绍变量汇总以及分组汇总。...一 summarize汇总 汇总函数 summarise(),可以将数据框折叠成一行 ,多与group_by()结合使用 1.1 summarise完成指定变量的汇总 统计均值,标准差,最小值,个数和逻辑值...group_by() 和 summarise() 的组合构成了使用 dplyr 包时最常用的操作之一:分组摘要 2.1 按照Species分组,变量汇总 iris %>% group_by...is.na(x)) :返回非缺失值的梳理; n_distinct(x):返回 唯一值的数量。

    2.5K60

    R语言|数据清洗

    数据清洗是数据分析流程中必不可少的一步。清洗得当的数据是可靠分析的基础,而在R语言中,有许多强大而灵活的工具可以帮助我们高效完成数据清洗。...本文将全面介绍R语言数据清洗的常见技巧,并配以具体的代码示例。 数据清洗常见的任务包括:处理缺失值、数据格式转换、去除重复数据、修正异常值、数据标准化、数据分组与聚合、文本数据清理。...2. dplyr dplyr是R语言中最受欢迎的数据操作包之一,擅长数据清洗和操作,语法简洁直观。...(data) # 删除重复行 data_unique % distinct() 修正异常值:通过计算分位数或使用业务规则修正数据中的异常值。...:对于分组和汇总操作,dplyr非常方便。

    12410

    R语言之数值型描述分析

    epiDisplay 包的函数 summ( )作用于数据框可以得到另一种格式的汇总输出,它将变量按行排列,把最小值和最大值放在最后两列以方便查看数据的全距。...数值型变量的描述性统计分析 本节将讨论数值型变量的集中趋势、离散程度和分布形状等。这里我们关注 3 个连续型变量:年龄(age)、母亲怀孕前体重(lwt)和婴儿出生时体重(bwt)。...cont.vars dplyr::select(birthwt, age, lwt, bwt) 接下来,先计算这 3 个变量的描述性统计量,然后按照母亲吸烟情况(smoke)分组考查描述性统计量。...( )同时计算数据框中多个变量的指定统计量。...实际上,在第 3 章介绍的 dplyr 包里的函数 group_by( )和 summarise( )就能非常灵活地计算分组统计量。

    24920

    RNA-seq入门实战(三):在R里面整理表达量counts矩阵

    counts与TPM矩阵: 读取counts.txt构建counts矩阵;样品的重命名和分组;counts与TPM转换;基因ID转换;初步过滤低表达基因与保存counts数据 从salmon输出文件中获取...部分作为counts rownames(counts) 将基因名作为行名 #更改样品名 colnames(counts) colnames(counts) ID转换 若上游中采用的是UCSC的基因组和gtf注释文件,则表达矩阵行名就是我们常见的gene symbol基因名;若上游采用的是gencode或ensembl基因组和gtf注释文件,那么我们就需要将基因表达矩阵行名的...列中的相同基因进行合并 tpm <- column_to_rownames(tpm,'Group.1') id转换前 id转换后 4....初步过滤低表达基因与保存counts数据 我们的数据中会有很多低表达甚至不表达的基因,在后续分析中可能会影响数据的分析判断,因此需要对低表达的基因进行筛除处理。筛选标准不唯一,依自己数据情况而定。

    20.2K56

    R 数据整理(七:使用tidyr和dplyr处理数据框 2.0)

    ,后续的参数是条件,这些条件是需要同时满足的,另外,条件中取 缺失值的观测自动放弃,这一点与直接在数据框的行下标中用逻辑下标有所不同,逻辑下标中有缺失值会在结果中 产生缺失值。...2.2 sample_n dplyr 包的 sample_n(tbl, size) 函数可以从数据集 tbl 中随机无放回抽取 size 行,如: > d.class %>% sample_n(size...,在对应的 names_to 中用特殊的".value" 名字表示切分出来的那一部分实际是变量名,这 时不需要 values_to 选项: dwide4 %>% pivot_longer( -id, names_pattern...将数据框按某列拆分为多个数据框,并储存在列表中。...nest 和 unnest 函数,可以将子数据框保存在 tibble 中,可以将保存在 tibble 中的子数据框合并为一个大数据 框。

    10.9K30

    一篇小短文助你打开数据可视化的任督二脉!

    国家线通常需要在group的基础上,施加id(该id将同属一个国家的不同group归类为一个编号),当然我们也可以将id匹配上国家(行政区划)的实际名称(通常获取的数据地图素材都会同时匹配上id和行政区划名称...这个问题是个好问题,一语中的,确实,order变量十分重要,但是通常获取的地理信息文件中,order变量是已经按照group分组变量排序过的,即通常所用到的地理信息数据框中,所有的边界点经纬度信息,是先按...而每一个id(国家或者地区)会对应一个数值型(或者因子型变量),当你在给ID赋值指标变量的时候,就已经完成了group到颜色之间的对应映射关系。...,即如果zhibiao是连续型变量,那么最终就会按照连续渐变色进行填充,图例也是练习渐变的图例,指标是分类或者因子型,则会按照离散渐变进行填充。...通常只需追加一句代码: dplyr::arrange(mymapdata,group,order) 即先按照group分组,组内按照order排序,这样既可保证最终的数据是符合几何图层映射规则,

    1.4K40

    R语言数据处理:飞机航行距离与到达延误时间有什么关系??

    数据分析有一半以上的时间会花在对原始数据的整理及变换上,包括选取特定的分析变量、汇总并筛选满足条件的数据、排序、加工处理原始变量并生成新的变量、以及分组汇总数据等等。...带着这个问题,我们将首先使用dplyr包对给出的航班数据进行处理。...包,该软件包中的飞机航班数据将用于本文中dplyr包相关函数的演示。...在这个环节,主要历经三个过程: 数据分组(Split):可以指定目标变量,将数据进行分组。...3.2 应用函数及组合结果 我们使用dplyr包中的summarize()函数,进行数据统计指标的获取及组合。计算出不同目的地的平行航行距离以及平均延误时间。

    3.1K40
    领券