首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

CVPR2023 Tutorial Talk | 文本到图像生成的对齐

如何更好地遵循文本提示 虽然文本到图像模型是希望能够生成与输入文本提示在语义上相关的图像来进行训练的,但是当文本描述变得更复杂时,模型可能会选择忽略一些物体,或无法理解某些详细的属性描述,例如将颜色应用于错误的物体...这样的措施可以有效地实现这种 grounding 控制的广泛应用,例如将文本描述与边界框grounding、关键点grounding 和其他类型的特殊对齐的条件结合起来。...因此,通用引导对于视觉模型是一个代表性的工作,其中核心思想是扩展在分类引导中的思想,以将分类器扩展为一般的辨别器引导。...在最后部分,我们将深入讨论这种多模型训练,并更多地讨论这些系统。 遵循文本提示 尽管我们训练模型希望它可以生成与文本条件语义相对应的图像,但在许多场景中可能不是这样。...具体来说,这些提示对齐可能是我们使用一个大型多模态模型,例如代表性的 lava,获取生成的图像并生成一个描述,然后计算与输入提示的文本相似性,这产生了一个分数,基本上表明了生成图像和输入文本提示之间的语义对应关系

93820
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NeurIPS 2022 | 文本图片编辑新范式,单个模型实现多文本引导图像编辑

    机器之心专栏 机器之心编辑部 最近用文本来引导图像编辑取得了非常大的进展以及关注度,特别是基于去噪扩散模型如 StableDiffusion 或者 DALLE 等。...该语义调制模块包括语义对齐和语义注入模块,首先通过注意力机制对齐文本编码和 GAN 的隐编码之间的语义,再将文本信息注入到对齐后的隐编码中,从而保证该隐编码拥有文本信息从而达到利用文本编辑图像能力。...不同于经典的 StyleCLIP 模型,我们的模型无需对每个文本单独训练一个模型,一个模型就可以响应多个文本从而对图像做有效的编辑,所以我们的模型成为 FFCLIP-Free Form Text-Driven...精确的文本 - 图像编辑依赖于 StyleGAN 的视觉语义空间与 CLIP 的文本语义空间之间的精确潜在映射。...接着我们使用线性变换将当前的视觉空间转换到与文本对应的子空间,其中线性变换参数(即平移和缩放参数)是基于这两个注意力图计算的。通过这种对齐方式,我们可以自动的为每个文本找到相应的视觉子空间。

    42410

    将图像自动文本化,图像描述质量更高、更准确了

    在这其中,图像 - 文本数据集发挥着至关重要的作用,在图像理解、文本生成和图像检索等多个领域发挥着关键作用。...,最后利用拥有强大的推理能力的纯文本大语言模型将这些文本化的信息转化为高质量的图像描述。...评估基准与实验:提出了多个评估细节丰富的图片描述的基准,通过广泛的实验验证了框架的有效性。 数据集与代码发布:利用我们的图像文本化框架,我们生成了一个大规模高质量的图像描述数据集(IT-170K)。...对此,我们首先利用分割模型将这些物体的 mask 给提取出来,再将原本的图片转化为深度图,通过计算深度图中特定物体 mask 对应的深度分数来将深度信息由文本体现出来。...全面评估与实验验证 为了验证我们框架的有效性,我们构建了三个评估基准,分别是 DID-Bench(详细图像描述基准)、D2I-Bench(描述到图像基准)和 LIN-Bench(语言基准)。

    36710

    【Android 应用开发】Canvas 精准绘制文字 ( 测量文本真实边界 | 将文本中心点与给定中心点对齐 )

    文章目录 一、测量文本真实边界 二、将文本中心点与给定中心点对齐 一、测量文本真实边界 ---- Paint.getTextBounds() 函数原型如下 : public class Paint {..., 是使用 Paint 在 Canvas 中绘制的文本的真实占用区域 , 如下图红色矩形框所在的区域 , 与文本的相对坐标 , 下图的红色矩形框的 右下角是 ( 0 , 0 ) 坐标位置 ; Rect..., 如有的文本时 abcd 类型的 , 下方没有超出基线 , 有的文本属于 jqpy 类型的 , 下方超出基线了 , 还有可能有特殊符号如度数符号 , 百分号等 , 造成了真实文本与绘图区域的差异 ;...绘图区域 与 真实文本区域 的差异 , 就导致了 文字绘图 不准确 , 不好定位的问题 ; 二、将文本中心点与给定中心点对齐 ---- 给定中心点 ( x , y ) ; 绘制文本 , 使得 文本的中心点...与 给定的中心点对齐 ; 根据中心点位置 : 确定绘制文本的左侧位置 : x - (rect.left + rect.right) / 2 , 绘制的文本 , 是下图红色矩形框的位置 , 文本的位置是不确定的

    1.4K20

    最新ICCV 2021 | 虚拟试衣(21)图像编辑-文本引导(22)图像编辑-单样本(23)生成对抗GAN

    DiOr 的关键是一种循环生成流水线,可以将衣服按顺序穿在一个人身上,这样以不同的顺序试穿相同的衣服就会产生不同的外观。...系统可以产生现有工作无法实现的着装效果,包括服装的不同相互作用(例如,将上衣塞进下装或叠穿),以及多件相同类型的服装的分层(例如,将夹克套在衬衫套上) T恤)。...二十二、图像编辑-文本引导 66、Language-Guided Global Image Editing via Cross-Modal Cyclic Mechanism 通过语言请求来自动编辑图像可以大大节省繁重的手工工作...本文专注于语言引导的全局图像编辑任务。现有工作存在数据集数据分布不平衡和不足的问题,因此无法很好地理解语言请求。...网络学习在图像的原始表征与图像本身之间进行映射,而原始表征的选择对操作的易用性和表现力有影响,可以是自动的(例如边缘)、手动的(例如分割)或混合的,例如分割的边缘。

    75810

    HD-Painter: 基于扩散模型的高分辨率实时文本引导图像修复

    -图像 inpainting 模型仍有很大的改进潜力,尤其是在更好地将 inpainting 区域与用户图像对齐以及执行高分辨率 inpainting 方面。...为了解决上述问题,我们引入了无需任何训练或微调的提示感知内向注意(PAIntA)模块,可根据给定的文本条件增强自我注意力得分,旨在减少图像已知区域中与提示无关信息的影响,同时增加与提示对齐的已知像素的贡献...本文提出的文本引导的图像补全方法完全无需训练,与目前最先进的方法相比,在定量和定性方面都具有显著优势。...文本引导图像绘制的目标是输出图像 I^c \in \mathbb{R}^{H\times W\times 3} ,使 I^c \in \mathbb{R}^{H\times W\times 3}...\quad(1) 其中, c_j 表示第 j 个特征 token(像素)与给定文本提示 \tau 的对齐度。

    99610

    NIPS 2024 | 眼动引导的多模态对齐用于医学表示学习

    细粒度对齐优化:通过将眼动数据转化为标记级别的关联矩阵,作者优化了图像块和文本标记之间的细粒度对齐,显著提升了模型在多模态特征对齐中的表现。...由于每种模态都是同步的,音频数据与眼动数据在时间上对齐。通过根据每个单词发音前后的时间分割音频,作者可以将转录与音频对齐,从而将句子级别的文本与眼动数据对齐。...然后,作者计算句子到图像块和图像块到句子在一个实例中的相似度: 对于每个与句子对应的热图,作者首先将其划分为个图像块。随后,作者将个句子的热图连接起来,得到输入的眼动引导相似度矩阵(如图2.B所示)。...在该矩阵中,非零元素表示相应句子与图像块之间的语义相关性。因此,作者将二值化,将非零区域设置为1,得到眼动引导标签矩阵。...然后,作者将替换为更新后的,并在公式1中计算细粒度图像到文本损失和文本到图像损失。作者的眼动引导细粒度(EGF)对齐损失公式如下: IV.

    6510

    哈工大与北大提出注意力引导的图像去噪

    哈尔滨工业大学与北京大学的研究人员在神经网络Top期刊NeuralNetworks上2020年联合发表《Attention-guided CNN for image denoising》,受到一致好评...该模块对于复杂的噪声图像(真实噪声图像和盲噪声)是非常有效的。 同时,FEB和AB能共同提高训练噪声模型的效率和减少复杂度。 最后,一个RB通过获得的噪声映射和给出的噪声图像来重构干净的图像。...扩展的实验显示所提出的ADNet就定性和定量估计而言在合成的噪声图像、真实的噪声图像和盲去噪方面都获得好的性能。...6.在彩色合成噪声图像的去噪与盲去噪结果 ? 7.不同方法在真实噪声图像的去噪结果 ? 8.不同方法的执行速度 ? 9.不同方法的复杂度 ? 10.在Kodak24上彩色噪声图像的去噪可视化效果 ?...11.在McMaster上彩色噪声图像的去噪可视化效果 ? 12.在BSD68上灰色噪声图像的去噪可视化效果 ? 13.在Set12上灰色噪声图像的去噪可视化效果 ?

    1.6K10

    哈工大与北大提出注意力引导的图像去噪

    哈尔滨工业大学与北京大学的研究人员在神经网络Top期刊NeuralNetworks上2020年联合发表《Attention-guided CNN for image denoising》,受到一致好评。...该模块对于复杂的噪声图像(真实噪声图像和盲噪声)是非常有效的。 同时,FEB和AB能共同提高训练噪声模型的效率和减少复杂度。 最后,一个RB通过获得的噪声映射和给出的噪声图像来重构干净的图像。...扩展的实验显示所提出的ADNet就定性和定量估计而言在合成的噪声图像、真实的噪声图像和盲去噪方面都获得好的性能。...6.在彩色合成噪声图像的去噪与盲去噪结果 ? 7.不同方法在真实噪声图像的去噪结果 ? 8.不同方法的执行速度 ? 9.不同方法的复杂度 ? 10.在Kodak24上彩色噪声图像的去噪可视化效果 ?...11.在McMaster上彩色噪声图像的去噪可视化效果 ? 12.在BSD68上灰色噪声图像的去噪可视化效果 ? 13.在Set12上灰色噪声图像的去噪可视化效果 ?

    66110

    哈工大与北大提出注意力引导的图像去噪

    哈尔滨工业大学与北京大学的研究人员在神经网络Top期刊NeuralNetworks上2020年联合发表《Attention-guided CNN for image denoising》,受到一致好评。...该模块对于复杂的噪声图像(真实噪声图像和盲噪声)是非常有效的。 同时,FEB和AB能共同提高训练噪声模型的效率和减少复杂度。 最后,一个RB通过获得的噪声映射和给出的噪声图像来重构干净的图像。...扩展的实验显示所提出的ADNet就定性和定量估计而言在合成的噪声图像、真实的噪声图像和盲去噪方面都获得好的性能。...6.在彩色合成噪声图像的去噪与盲去噪结果 ? 7.不同方法在真实噪声图像的去噪结果 ? 8.不同方法的执行速度 ? 9.不同方法的复杂度 ? 10.在Kodak24上彩色噪声图像的去噪可视化效果 ?...11.在McMaster上彩色噪声图像的去噪可视化效果 ? 12.在BSD68上灰色噪声图像的去噪可视化效果 ? 13.在Set12上灰色噪声图像的去噪可视化效果 ?

    94910

    CVPR 2024 | 可控文生图11篇汇总!基于扩散模型diffusion的text-to-image

    本文提出利用预训练的文本到图像模型作为先验,并从真实世界数据中单一去噪过程中学习生成多视角图像。具体而言,将3D体渲染和跨帧注意力层集成到现有的文本到图像模型的每个块中。...-图像生成(text-to-image generation)方面取得了进步,但之前方法经常面临文本-图像不对齐问题,如生成图像中的关系混淆。...然而,T2I模型的固有对齐能力仍然不足。 通过回顾生成建模和判别建模之间的联系,假设T2I模型的判别能力可能反映了它们在生成过程中的文本-图像对齐能力。...鉴别适配器的好处是,自校正机制可以利用鉴别梯度,在推理过程中更好地将生成的图像与文本提示对齐。 对三个基准数据集(包括分布内和分布外场景)的综合评估表明,方法具有优越的生成性能。...2)表情引导将面部表情与身份进行分离,提高了面部表情的可控性。3)类别引导的去噪正则化鼓励模型学习如何对面部进行去噪,从而提高了背景的文本对齐性。

    2.7K10

    统一图像和文字生成的MiniGPT-5来了:Token变Voken,模型不仅能续写,还会自动配图了

    本文将图像作为辅助输入与指令调整方法相结合,并率先采用文本和图像生成损失,从而扩大了文本和视觉之间的协同作用。...单模态对齐阶段从大量文本图像对中获取高质量的文本对齐视觉特征。多模态学习阶段包括一项新颖的训练任务,即 prompt 语境生成,确保视觉和文本 prompt 能够很好地协调生成。...文本空间损失有助于模型学习 token 的正确定位,而潜在扩散损失则直接将 token 与适当的视觉特征对齐。...第一种策略包括采用无分类器引导技术,在整个扩散过程中提高生成 token 的有效性;第二种策略分两个阶段展开:最初的预训练阶段侧重于粗略的特征对齐,随后的微调阶段致力于复杂的特征学习。...虽然生成的图像质量相似,但与基准模型相比,MiniGPT-5 在 MM 相关性方面更胜一筹,表明其可以更好地学习如何适当定位图像生成,并生成高度一致的多模态响应。 效果如何呢?

    46940

    controlnet重大更新!FreeControl可控 T2I 生成的免训练模型

    FreeControl 设计了结构引导,以促进结构与引导图像的对齐,并设计外观引导,以实现 使用相同种子生成的图像之间的外观共享。FreeControl结合了分析阶段和综合阶段。...在合成阶段,FreeControl在子空间中采用引导,以促进结构与引导的对齐 图像,以及使用和不使用控制生成的图像之间的外观对齐。...FreeControl 设计了结构引导,以促进结构与引导图像的对齐,并设计外观引导,以实现使用相同种子生成的图像之间的外观共享。...最后,我们研究了空间条件与输入文本提示有微小冲突的情况。我们假设文本提示由一个概念(例如蝙蝠侠)和一种风格(例如卡通)组成,并将冲突的情况与其对齐的版本进行对比。...对应的对齐大小写包含类似的文本提示,但使用了来自具有相同概念的真实图像的空间条件。

    42810

    每日学术速递12.27

    因此,HoVLE 引入了一个整体嵌入模块,将视觉和文本输入转换为共享空间,允许LLMs以与文本相同的方式处理图像。此外,精心设计了多阶段训练策略来增强整体嵌入模块的能力。...(TI2V)生成旨在根据文本描述从图像生成视频,也称为文本引导图像动画。...这篇论文试图解决的主要问题是在文本引导的图像动画(Text-Image-to-Video, TI2V)生成中,如何提高视频与文本提示的对齐度,尤其是在涉及运动描述时。...论文通过以下几个关键步骤来解决文本引导的图像动画(TI2V)生成中视频与文本提示对齐度不足的问题: 引入 Motion Focal Loss (MotiF): 论文提出了一种名为 Motion Focal...论文的主要内容: 本文主要介绍了一种名为MotiF(Motion Focal Loss)的新方法,旨在改善文本引导的图像动画(Text-Image-to-Video, TI2V)生成任务中视频与文本提示的对齐问题

    10510

    在线试玩 | 对齐、生成效果大增,文本驱动的风格转换迎来进阶版

    文本驱动的风格迁移是图像生成中的一个重要任务,旨在将参考图像的风格与符合文本提示的内容融合在一起,生成最终的风格化图片。...另一个由过拟合引发的挑战是在文本到图像生成过程中保持文本对齐准确性困难,即便是在相当简单的文本条件下,例如 “A ” 这类简单文本。...教师模型稳定图像生成示例。 实验亮点 StyleStudio 的文本对齐能力与稳定的图像生成 与先前方法进行定性的比较试验。...基于风格的无分类器引导方法实验 研究团队针对提出的基于风格的无分类器引导方法进行试验,通过与传统的无分类器指导方法对比证明了所提出方法的有效性。 更多风格图像和文本条件下的实验结果。...实验结果进一步验证了该方法的有效性,表明其在文本对齐和布局稳定生成方面表现出色。更多内容与实验分析,请参考原论文。

    6100

    HD-Painter | 高分辨率+高提示词一致的文本引导图像修复,已开源

    https://arxiv.org/abs/2312.14091 https://github.com/Picsart-AI-Research/HD-Painter 基于文本到图像扩散模型的空前成功,文本引导图像修复的最新进展已经可以生成非常逼真和视觉上合理的结果...然而,当前的文本到图像修复模型仍有很大的改进潜力,特别是在更好地将修复区域与用户提示对齐以及执行高分辨率修复。...我们设计了智能感知内向注意(PAIntA)层,通过提示信息提高自我注意力分数,并产生更好的文本对齐生成。...本文方案 所提出方案由两个阶段组成: 在分辨率H/4 × W/4上应用文本引导图像修复。...在每一步之后,我们将去噪后的 X_0^{pred} 与原始图像的编码 \mathcal{E}(I) 进行混合并得到 X_{t-1} .

    48910

    如何使用多模态知识图谱嵌入:整合图像与文本

    多模态知识图谱的概念多模态数据的定义多模态数据是指同时包含多种数据类型(如文本、图像、音频等)的信息。在知识图谱中,实体可能会有图像描述和文本描述,这些信息可以用来增强嵌入表示。...例如,可以通过图像识别技术提取图像特征,通过自然语言处理技术提取文本特征,然后将这些特征与知识图谱中的实体和关系进行关联。...构建知识图谱将特征与知识图谱中的实体和关系结合。多模态知识图谱嵌入的方法特征提取使用卷积神经网络(CNN)提取图像特征,使用预训练的语言模型(如BERT)提取文本特征。...with torch.no_grad(): features = cnn_model(image) return features多模态融合将提取的文本特征和图像特征进行融合...pd.read_csv('flickr30k.csv')images = data['image_path'].tolist()texts = data['text_description'].tolist()特征提取与融合对每个样本提取文本和图像特征

    50121

    每日学术速递5.26

    我们利用这些数据集随附的现成的自然语言标签或描述,并使用 GPT-4 将嘈杂的非结构化文本信息与已建立的生物医学对象本体相协调。...利用自然语言标签:通过利用现有的自然语言标签或描述,并使用GPT-4将这些嘈杂、非结构化的文本信息与已建立的生物医学对象本体论相结合,来构建大规模的数据集BiomedParseData。...因此,局部抽样将概念的学习身份与基础扩散模型的现有生成先验相结合。...定量评估了使用CLIP和DINO进行文本和图像对齐的结果,并与原始Stable Diffusion模型进行了对比。 通过AMT用户研究收集了1250个响应,评估了人类对文本和图像对齐的偏好。...图像和文本对齐度的比较: 绘制了CLIP/DINO图像对齐度与CLIP文本对齐度的对比图,展示了不同方法在CustomConcept101的16个类别中的平均表现。

    25700
    领券